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ABSTRACT

Motivated by the desire to put a free electron laser (FEL) weapon on a ship,

the FEL and the related process of Compton backscattering are studied. The theme of

the majority of this work is the interaction of the Gaussian optical mode with a beam of

relativistic electrons.

Classical FEL theory is reviewed in Chapter II. Simulations based on the

classical theory are used in Chapter III to study a proposed 1 kW (kilowatt) infrared

FEL. In Chapter IV, simulation is used to study the problem of electron beam/optical

mode overlap in an ultraviolet (UV) FEL. A new concept, the FEL with a short

Rayleigh length, is studied in Chapter V. The idea is tested on the UV FEL, then used

to design and simulate a megawatt-class FEL for ship self-defense.

An analytical calculation of the Compton backscattering of laser light is

performed in Chapter VI. A quantum electrodynamics (QED) formalism is used to find

the spectrum and angular distribution of photons scattered out of a Gaussian optical

mode by relativistic electrons.
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I. INTRODUCTION

Today's US Navy is the most powerful the world has ever known. It can

position aircraft, ships, and submarines within striking distance and project its power

deep within the borders of almost any country. Yet today's ships are arguably more

vulnerable to attack from mines and anti-ship cruise missiles (ASCMs) than ever

before, as a result of the Navy's shift from blue to brown water. Ship defense against

ASCMs is mainly a problem of reaction time; that is, there is not much time (usually

seconds, depending on the missile's speed and the ship's detection range) between

detection of the missile and impact of the missile with the ship. In this case a self-

defense weapon which travels at the speed of light would be most useful. With

continuing improvements in ASCM speed, stealth, and maneuverability, the problem

gets even more difficult for existing defenses. A directed energy weapon (DEW) could

be the solution.

Experiments in missile destruction and atmospheric propagation have shown

that a megawatt (MW) class free electron laser (FEL) is the directed energy weapon of

choice for ship self defense (SSD). Megawatts are needed in order to deposit the

required energy on the target in a short amount of time. More power probably would

not shorten this time because thermal blooming, which results from atmospheric

absorption, will degrade propagation. The FEL is needed because of its inherent

tunability and designability, characteristics no other laser system can boast. The laser

weapon's wavelength must operate in very narrow atmospheric absorption windows in

order to propagate the beam to the target, avoiding problems like thermal blooming.

The FEL has another advantage over other laser systems in that its gain medium is a

vacuum.

While SSD is seen as the mission area where laser weapons can get their

start, a MW-class FEL aboard a ship could be an awesome offensive weapon as well.

It was demonstrated in the 1970s that it is easier for the laser weapon to destroy

1



crossing targets than incoming targets. It is possible that the precision and power of

the FEL could also be used against aircraft and their pilots, satellites, ballistic missiles,

other ships, and even personnel. Unlike the proposed Arsenal Ship, which merely

packs a ship with more missiles, a shipboard directed energy weapon would truly bring

about a revolution in military affairs, which would hasten the obsolescence of the

missile. In this work we study the FEL and related phenomena, contributing to a field

of scientific research with the goal of putting a DEW on a ship.

Several topics are presented on the interaction of laser beams with relativistic

electrons; this includes the free electron laser. In the next chapter, an overview of

classical FEL theory necessary for understanding the ensuing chapters is provided.

We describe the components of the FEL and then find the emission wavelength using

basic physical arguments. Using the Lorentz force and Maxwell's equations, we derive

a set of two equations called the FEL pendulum and wave equations which describe

the FEL interaction. Using these equations, we find expressions and describe the

mechanisms for FEL gain. Modifications of the FEL interaction due to short optical

pulses or the Gaussian optical mode are considered in the last two sections of the

chapter.

Original work simulating a proposed one kilowatt (1kW) upgrade to the

FIREFLY FEL at Stanford University is presented in Chapter III. This upgrade would

represent a one hundred-fold increase in FEL average power over that which currently

exists. This work was originally presented at the 16th International FEL Conference

and published as "Simulations of the Stanford FIREFLY 1kW free electron laser" in

Nuclear Instruments and Methods in Physics Research (NIM) A 358, ABS 44, (1995).

In Chapter IV is presented original research concerning optical mode

transverse effects in ultraviolet free electron lasers (UVFEL). Specifically, it is the

UVFEL proposed by the Laser Processing Consortium (LPC). a group based at the

Thomas Jefferson National Accelerator Facility (TJNAF), that is simulated. The results

were presented at the 17th International FEL Conference and published as



"Transverse effects in UV FELs" in NIM A 375, ABS 61, (1996).

New and original work on a new concept in FEL design, the short Rayleigh

length FEL, is presented in Chapter V. The concept is first tested on the LPC UVFEL.

Those results were presented at the 18th International FEL Conference and will be

published in 1997. We then use this concept to design and simulate a MW-class FEL

oscillator suitable for ship self-defense. This design and the simulation results were

presented at a workshop at TJNAF entitled "Navy MW-Class SSD FEL Concepts"

which was sponsored by the Navy High Energy Laser office at the Space and Naval

Warfare Command (SPAWAR).

In Chapter VI we present new and original calculations of Compton

backscattering of laser light from electrons. This process has been proposed as a

means of generating x-rays for many applications, including medical imaging, and y-

rays for a so-called y-y collider. Our calculations are the first attempt to incorporate the

finite size of the laser beam into the usual scattering problem.





II. CLASSICAL FREE ELECTRON LASER THEORY

A. THE FREE ELECTRON LASER

The Free Electron Laser is a device which transforms the kinetic energy of a

beam of relativistic electrons into coherent radiation (Ref. 1). A transverse, static

magnetic field causes the electrons to wiggle and thereby radiate electromagnetic

energy (Ref. 1). The radiation can either be stored in an optical cavity and amplified

over many passes, as in the FEL oscillator, or amplified in a single pass, as in the FEL

amplifier (Ref. 1). In this work, we will be concerned only with the oscillator

configuration.

The major components of the FEL oscillator are the electron accelerator,

undulator, and optics. The accelerator delivers a beam of relativistic electrons to the

FEL with energies anywhere from a few MeV to GeV depending on the wavelength of

laser light desired. There are many different types of accelerators suitable for use in

an FEL, but we will only be concerned with the radio-frequency linear accelerator (RF

LINAC). The RF LINAC accelerates pulses of electrons, called micropulses, using

either standing or travelling waves of an electromagnetic field (Ref. 2). One

micropulse can be accelerated within each wavelength of the RF field, called a

"bucket." For example, if the frequency of the RF radiation is / = 500 MHz, buckets

are separated by a distance elf =60 cm. Electron micropulses are created and

inserted into the accelerator by the injector (or electron gun). In our example, if the

injector also operated at 500 MHz. it would fill every RF bucket and micropulses would

be separated by 60 cm. The current in the micropulse is called the peak current /,

and the average current is calculated using the duty factor (the ratio of the micropulse

length to the distance between buckets). If we take / = 500 A and a micropulse length

le = 0.6 mm {le /c = 2 ps), then the duty factor in our example accelerator is 0.001.

The average current is then 7 = 500x0.001 A = 0.5 A.



The undulator is a set of permanent magnets or electromagnets arranged to

provide a periodic, transverse, magnetic field of wavelength X along which the

electrons traverse. The polarization of the undulator's magnetic field can be either

helical or linear. The world's first FEL used a helical undulator, but the linear

undulator is more common now (Ref. 3). Undulators can range in length from 1m to

25m.

The mirrors of the optical cavity (in the oscillator) store the light which is then

amplified over successive passes of the electrons through the undulator. Total optical

cavity losses, including the outcoupled light, are quantified by the quality factor Q, so

that losses per round trip of the optical pulse are (100/Q)% (Ref. 3). The optical cavity

is generally centered on and several times longer than the undulator.

B. THE RESONANCE CONDITION

With a basic knowledge of the physics of the FEL interaction we can define

some important parameters and find the wavelength of the emitted radiation.

Depicted in Figure 1 is the FEL interaction: the interaction of relativistic

electrons with the undulator magnetic field, E$u , and the radiated electric, Ezn and

magnetic, Br , fields. At the top is a schematic of an FEL showing the electron beam

path through the undulator, the orientation of the undulator magnets, and the mirrors.

The middle sketch is a blow-up of one wavelength X of the undulator. The undulator

magnetic field Bu oscillates in the yz-plane, causing the electrons to wiggle in the xz-

plane. At the bottom of the figure is a blow-up of one half of one wavelength X of the

radiation field. A portion of the electron trajectory is drawn at an angle to the z-axis. It

is the transverse component of the electron velocity, that which projects on the xy-

plane. which couples to the radiation electnc field, allowing energy to be transferred

between them.
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In order for the radiation in the oscillator cavity to grow, the electrons must lose

energy to the light wave on each pass through the undulator. The Lorentz force

shows that this energy loss is dy/dt °c j? • t.
r
where J = V/c, V is the particle velocity

and the relativistic factor y= (1 - ^
2)~ 1/2 (Ref. 5). Since £f

is transverse, that is, in a

plane perpendicular to the z-axis, only a transverse component of ^ couples to the

cavity radiation. Driven by the undulator magnetic field, that transverse component is

ik z
of the form p4

°c Re (Ke °
) where K is a constant called the "undulator parameter,"

k = 2n/X , and X is the undulator wavelength. The electric field is of the form

Er
oc Re(E e' ( '(Z"a)f+<t,)

) where k = 2k/X, X is the radiation wavelength, co = kc, and $ is

an optical phase factor. Therefore, we find that dy/dt « Re(KE e
+

° '^e'*'). It is

evident from these preliminary considerations that the electron "ponderomotive" phase

defined as

C = (k + k )z - ©f (1)

is fundamental to the FEL interaction. For relativistic FELs, this phase represents the

position of the electron within a radiation wavelength.

The time it takes the electrons to traverse the undulator is L/c(3z = 10"8
.

Rather than work with time scales on the order of 10"8 seconds, we introduce a

dimensionless time x, defined as

T=-^ = f , (2)

where L is the undulator length and c(57 = vz = c in the relativistic limit. As the

electrons traverse the undulator t ranges from to 1 . We can now define the electron

phase velocity as

v(t) = -^ = L[{k + *o)k - k] . (3)
ox

The phase velocity measures the rate of change of the electron's phase relationship

(Q to the optical field.

8



In order that the rate of transfer of energy from the electrons to the radiation

field is maximized, the wiggling electron and the electric field must be nearly resonant.

Looking at Figure 1 , we can explain this as follows: when the electric field is pointed

in the x-direction, the electron trajectory needs to have a component in the x-direction.

When the electric field phase increases by n and is pointed in the (-x)-direction, the

electron trajectory must also have a component in the (-x)-direction. This will be the

case if exactly one wavelength of light passes over the electron every time the

electron traverses exactly one wavelength of the undulator. This is the "resonance

condition." If one wavelength of light passes over the electron for every undulator

period the electron traverses, the electron will maintain the same phase relationship

with the light. Resonance thus implies that the phase velocity v(t), must be zero.

Invoking the resonance condition, we set v(x) = in (3) and solve for X with the

result X = X (1 - pz )/(3z . From the definition of y, we find y
-2

= 1 -
(3

2 - pf. In the

helical undulator (as determined later), (3

2 = K2
/-f. Solving for pz we get

P, = 1 - ^jr + - (4)

for y » 1 . Substituting (4) into the expression for X above we find

X = Xo±^f- (5)
2y2

which is the wavelength of light emitted by the electrons in the FEL. This expression

shows that we can change the wavelength by changing the electron beam energy

ymc2
or the undulator characteristics Xq or K.

In the preceeding discussion we defined and then discussed resonance for a

single electron. In a real electron beam, there are about 10 10 electrons in the

micropulse; all of them could not possibly be exactly resonant. Although we define

o o

resonance as v = £ = 0, where ( ) represents differentiation with respect to t, we will

find that in the low gain FEL (section E) it is desirable to operate at just above

resonance v(0) = v = 2.6. We can understand this by considering that about 1
6



electrons are uniformly spread over the length of an optical wavelength. If they are

resonant, they maintain the same phase relationship with the light throughout the

interaction even though the light is passing over them. Thus at resonance the

radiation from the /* electron at £,, will exactly cancel that from an electron at a phase

(£,• - n). This cancellation will occur for each electron. To avoid this cancellation, for

net radiation, the electrons must radiate together, or "bunch" on the scale of the

o oo

optical wavelength. This requires that t, > and £ > 0. We will discuss this

microscopic bunching in part three of the next section.

C. ELECTRON DYNAMICS

Electrons in the undulator interact with both the undulator field and the radiation

field which has been set up in the cavity. In subsection 1, we find the electron

trajectories in the undulator using the Lorentz force equation of motion. We then use

these trajectories in the second subsection to deduce measures of electron beam

quality. In the third subsection we assume that electron radiation has set up a

classical radiation field in the optical cavity and then allow it to interact with the

electrons. This will result in the pendulum equation, which describes bunching.

1. Electron Trajectories in the Undulator

A linear undulator polarized in the y-direction causes electrons to wiggle in the

xz-plane. In addition, since electron beams have a small radius and angular spread

(which depends on the quality of the beam from the accelerator), electrons off axis in

the y-direction are in stronger fields and are therefore focussed back toward the axis.

This results in so-called betatron oscillations.

The magnetic field of a linear undulator with no external focussing in the x-

direction is given by

B = [Bx , By Bz ]
= 8 [0, sin(/c z)cosh(/c y), cos(/c z)sinh(/c y)] (6)

10



where B is the amplitude of the undulator field (Ref. 3). Consider an idealized

electron which is injected into the undulator perfectly (i.e., x(0) = px (0) = 0) in the x-

direction. The electron motion is governed by the relativistic Lorentz force equation of

motion in the undulator field (Ref. 5):

-f
= -e(?xS (7)

where e = lei is the magnitude of the electron charge, and the electron's momentum

is p = ymc$, m is the electron mass, and c is the speed of light in vacuum. Note that

cgs units are used. Substituting (6) into (7), noting that dy/dt = since the magnetic

field can do no work on the electron, we get the set of equations

Px =— [Pz sin(/c z(f))cosh(/c y(f)) - py cos(/c z(f))sinh(/c y(f))] (8a)
ymc '

h = -^P*cos(*oz(0)sinh(fr y(0) (8b)
7 ymc

eB
Pz = -pxsin(/c z(f))cosh(/f y(0) (8c)

ymc

where (
'

) s d/dt. The right side of (8a) is an exact time derivative and can be

integrated immediately with the result:

fix = -^cos(/c z)cosh(/c y) (9a)

where K = eB"K >2nmc2 and B = Bq/^2 is the root-mean-square (rms) magnetic field

strength. The dimensionless parameter K is the undulator parameter and is an

important quantity in FEL physics, as shown in (5). The constant of integration has

been set to zero indicating our assumption of perfect injection in this direction. The

time dependence of the dynamical variables has been suppressed for brevity.

Substituting (9a) into (8b) and (8c) we get

cK2k
Py

= J-5-cos
2
(/c z)sinh(2/c y) (9b)

r

11



Pz =

—

F^sin(2/f z)cosh^(/f y) . (9c)

r

Equations (9) are coupled, nonlinear and too difficult to solve analytically. In

order to investigate the xz-plane motion we will now add the restriction of perfect

injection in the y-direction also. That leaves us with

Px =——cos(k z) (10a)
Y

Py (0) = y(0) = o (10b)

cK2k
Pz = -^-sin(2/c z) . (10c)

r

Now in the FEL, K"=1 and y» 1, so that K/y <sl 1 (Ref. 3). This allows us to expand

equations (10) for the trajectories, keeping only terms to order {K/y)
2

. To zeroth order

in {K/y), z(t) = c{52 f where cj3z we take to be the average electron velocity in an

undulator period. Using (4), we find c(5z = c(1 - ('\+K
2
)/2y

2 + ...) = c. Substituting

z(t) = c$z t into (10c) to find the next higher order contribution we get

2(f) = cpV - -KL-sin(2* cM + • • • (11)
4k f

which is already to order (K/y)
2

. To find x(f), we will substitute the first term of (11)

into (10a) since using the second would lead to higher order terms in x(f). We get

x(0 = -^sin(* cM + ••• (12)
KoY

where in both (11) and (12) we have set (57 = 1 in the denominator.

We can rewrite (11) and (12) in terms of the dimensionless time x (see (2)) as

KKn
x(t) = -^=-^-sin(2n/\/T) + • •

• (13a)
V2KY

K2\«
z(t) = P7 Lt -£sin(4n/VT) + • •

• (13b)
8TTY

2

12



where N = LlXQ is the number of undulator periods. As expected, the x-component of

the trajectory is the wiggling motion caused by the undulator with one oscillation per

undulator period. The z-component contains the average velocity term and a term

with a fast oscillation (twice per undulator period). The oscillation is superimposed on

the average motion because as an electron with constant speed makes an excursion

to the side, the z-component of its velocity must slow, leading to an oscillation in z-

trajectory. An electron makes this excursion twice per linear undulator period, which

causes the z-trajectory to oscillate twice per undulator period.

Now that we have found the trajectories in the x- and z-directions (13), we will

find the motion in the y-direction. The y-trajectories are called betatron oscillations

and are caused by the focussing action of the undulator magnetic field. We need to

use a more realistic beam in this direction, but maintain a small enough beam such

that /c y«:1 and sinh(2/c y) = 2k y. If we then re-write (9b) in terms of x, the result is

oo 2K2L 2k 2

y(x) = —^-cos2
(27iA/x)y(T) . (14)

r

Since a typical betatron oscillation takes several undulator periods to complete, we can

average (14) over several periods (Ret. 3). We are then left with

°° K2L
2
kl dV0)

y(x) =—j-y(D =—^- 05)

which is the equation of motion for a simple harmonic oscillator. The solution, and

thus the y-trajectory. is sinusoidal. The harmonic potential is Vp(y) = co^y
2^ where

cop = KLk y = 2nNK/y is the dimensionless betatron frequency. In a typical undulator

N = 100, K - 1. y = 100. and we get a>p = 2n, or one betatron oscillation along the

undulator.

We have only treated betatron motion in one direction, but there can be

betatron focussing in the other direction as well. This could be provided by external

focussing magnets, or by machining parabolic pole-faces on the undulator magnets

13



(Ref. 3). Neither the amount of focussing nor the electron beam quality have to be

the same in both directions.

2. Electron Beam Quality and Emittance

By inspection of (15) and knowledge of Hamiltonian mechanics, we know the

harmonic betatron oscillations have a constant of motion

Hp = [w
py

2
(x) + y

2
(x)]/2 = [co

py
2
(0) + y

2
(0)]/2. It can also be shown that when an

o

electron is injected off axis (y(0) = y ) or with an initial angle (y(0) = LQ
y
where 6

y
is

the angle from the z-axis), its z-velocity is decreased by A(3Z = -H
p
/L

2
relative to a

perfectly injected electron (Ref. 3). Taking differentials of (3) we find Av = L/cA(32 since

k » k . Therefore, an imperfectly injected electron experiences a decrease in phase

velocity given by

L 1 + K£

where we have used (5).

In a real electron beam from an RF LINAC there can be =10 10
electrons per

micropulse, each of which has a phase velocity change away from the average given

by (16). Numerically we don't simulate all 10 10
electrons, but instead distribute many

electrons in both injection position and angle. They are distributed as a Gaussian,

which has the distribution function

f(q)=
eM-9 2^)

(17)
\2n o

where o is the standard deviation and q is the variable being distributed (Ref. 3).

Using (16) as a guide we define the standard deviation of the angular distnbution as

o..^!^ (18)
1 + K2

where § is the root mean square (rms) initial angle from the z-axis. The standard
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deviation of the position distribution, also called the dimensionless electron beam

radius, is

=
Vir TQ (19)

where T is the rms initial distance from the z-axis (Ref. 3). The significance of the

factor VXTTrc, the characteristic optical mode size, will be discussed in section G of this

chapter. From (16) we see that

2izNK2k 2T
2

1 + K2
(20)

is the standard deviation of an exponential spread in phase velocity caused by the

initial Gaussian spread in position characterized by (19). The Gaussian spread in

injection angles characterized by (18) also leads to an exponential distribution in

phase velocity with the same standard deviation (Ref. 3). The exponential distribution

arises because the phase velocity of an electron decreases no matter what the

direction of the (Gaussian distributed) initial position or angle. The distribution function

for the exponential is given by

f {q) = ex^iqlcl.
q < Q (21)

c

where q is the variable being distributed, i.e., v,, the phase velocity of the i
th

electron

(Ref. 3).

The injection angles and positions of the electrons in the beam are governed

by a quantity called the "emittance," which is a measure of the quality of the electron

beam. The rms emittance is defined as t^ = nr e, and is a fixed quantity throughout

the entire length of the undulator (Ref. 2). That is, one cannot change the radius of

the electron beam without affecting its angular spread and vice versa. Solving (18)

and (19) for 8 and T and substituting these into the definition of emittance yields

£nw = ^ ?* (22)
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where we have defined the dimensionless emittance 8 as

e = oe Va^ . (23)

This dimensionless emittance will be used extensively in Chapters IV and V.

3. The Pendulum Equation

We now consider the interaction of the electrons with both the undulator and

radiation fields. We have already found the macroscopic electron trajectories in the

undulator. Our goal in this subsection is to find an expression which describes the

evolution of bunching. We will use the field of a helical undulator in this section as it

makes the problem mathematically easier. At the end we will state a prescription for

transforming the pendulum equation to that for a linear undulator.

The magnetic field on the axis of a helical undulator is given by

4 = B [cos(k z), sin(/c z), 0] (24)

and the radiation field present in the cavity can be represented by

£> = E(x,y,z,t)[cos\\i, -sinvj/, 0] (25a)

&r
= E(x,y,z, t)[s\n\\i, cosy, 0] (25b)

where E(x, y, z, t) is the wave amplitude and qi = kz - tof + $ (Ref. 3).

To describe this problem of the interaction of electrons with the undulator and

radiation fields, there are five coupled equations:

(26)

(27)

(28)

but only four unknowns: p\, Py , P7 , and y. so we can neglect the z-component of (26).

16
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The fields £* and ^ in (26) and (27) are the sum of the radiation and undulator fields.

Substituting (24) and equations (25) into the x- and y-components of (26), we get

-rf($x)
= —~ E ( 1 - Pz)[cos\|/, -sinvj/, 0] + pz e [-sin(/c z), cos(k z), 0] (29)

where we have used px
= ymcft and E = E(x,y,z,t). The right side of (29) contains

two terms, the first of which is proportional to (1 - pz ) and is surely small for relativistic

electrons. We will neglect this term and keep only the dominant undulator term (i.e.,

that which is proportional to B ). We can then integrate (29) and set the constant of

integration to zero indicating perfect injection. The result is

ft = --[cos(k z), sin(/c z), 0] (30)

where K = eB X /27tmc2
is the undulator parameter since B = B in the helical

undulator.

As mentioned earlier, £: is transverse and couples with only the transverse

components of $, that is, (30). Therefore substituting (30) into (27) we are left with

Y=—cos(<; + <!)) (31)
ymc

where £ is given by (1) and <\> is the phase of the optical field as discussed above.

As we noted earlier, (28) can be arranged as y~2 = 1 - pf - pf . If we

substitute (30) for pf we get

Y"
2
= -^4 <32 >

1 + K2

which shows that a change in y does not result in a change in (J lt only in P7 . Taking

the time denvative of both sides of (32) results in

y 1 + K2

Construction of yytrom (31) and equating that with (33) results in
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y 1 + K2 (k + k )c eEK Ir .,
£ =

j cos(C + $) (34)

where we have used pz = ^/(k + /c )c. We will now make approximations using

k » k and pz = 1 , and substitute for k using (5) to get

•• 2kQeEK
C = —\ cos(£ + <|>) . (35)

fm

We can make (35) dimensionless by setting d2
/dt

2 = (c/L)2d2/dx2 , which leaves us

with

oo

£ = lalcos(£ + (|>) (36)

which is the pendulum equation. We have defined the dimensionless optical field

amplitude la I as

|a|=
4*AteKLE

(3?)
fmc2

The pendulum equation appropriate for the linear undulator can be found by the

substitution K -» K[J (Z,) - J&)] in (37) (Ref. 3). Here J (£) and J,^) are Bessel

functions of the first kind of order and 1 and £ = K2
l2(\ + K2

).

oo

Equation (36) shows that electrons with phase -n/2 < (^ +
(J>)

< tc/2 have C, >
oo

while those with rc/2 < (£ + <)) < 37i/2 have £ < 0. This difference in phase

acceleration shows how electrons which are initially distributed randomly from

(£ + 0) = -Ti/2 to (C, + <>) = 3tc/2 are driven together, i.e., bunched, near (£ + 4>) = tc/2 by

the FEL interaction. In the next section, we will see what affect these bunched

electrons have on the optical field.

D. THE FEL OPTICAL WAVE EQUATION

Knowing through the pendulum equation that the electrons will be bunched by

the FEL interaction, we now find what affect those bunched electrons have on the

classical radiation field. We use Maxwell's equations driven by the electron current to

18



determine the form of the FEL optical wave equation (Ref. 3).

Electrons in the undulator emit spontaneous radiation because they are made

to accelerate. After approximately one pass, there is enough radiation in the optical

cavity to take on a classical form (Ref. 3). Over the next several passes this

spontaneous emission spectrum is narrowed. In many cases, the final FEL emission

spectrum, or linewidth, is determined by the length of its optical pulses through the

Fourier transform (Ref. 3). Short optical pulses result in broader spectra than long

optical pulses. At this point in the operation of the FEL, the radiation wavelength is

given by (5). Since we know that the emission spectrum of the FEL is narrow (it is a

coherent light source), it must be that the amplitude and phase of the radiation field in

the cavity are slowly varying in both time and space. We will invoke the slowly-varying

amplitude and phase approximation in the following derivation of the FEL optical wave

equation (Ref. 3).

The fields in the cavity of an FEL with a helical undulator are given by

equations (25). Since the amplitude and phase are slowly varying in time, we can

write the vector potential for these fields as

X = £
(
x 'y»z '0 c e 'V £ (38)

CO

where £ = [-/, 1, 0] is the polarization vector and y = kz - (at + $. The potential for

the physical fields is given by the real part of (38). The inhomogeneous wave

equation for A is given by

1 d2V 2 -
c df

2
X = -^7 (39)

c

where J is the driving current density (Ref. 5). The slowly-varying amplitude and

phase approximation can be written as inequalities: E <~ kE, <>' « Jr0, E <: toE and

4> <: uxj> with (
)' = d()/dz (Ref. 3). In the wave equation, this approximation has the

effect of favoring first derivatives over all other terms. Substituting (38) into (39) and

carrying out the z- and t- denvatives we are left with
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Wf + 2ik
dz c dt

E(x,y,z,t)e^x -y'z^ = -i^.^*e-'(ta " w '>
(40)

c2

where V^ = d
2
ldx2 + d

2
ldy2 and £* is the complex conjugate of e.

The driving current ~3
is given by

J(x,y,z) = -ec £ 5(x - x,) 5(y - y,) 6(z - z,) ft = -ec £ 5<3)(7*-7*) ft (41)

where 5(x) is the Dirac delta function, t is the position vector of the field point

(x, y, z), fj is the position vector of the i
th

electron, and the index / runs over all

electrons in the micropulse. Substituting (30) and (41) into (40) and dividing by 2ik

results in

4 n l dz c dt
Ee 1* = -2neK X

-'•;,

Y/

5(3)(f-^) (42)

where we have used (1) and E = E{x,y,z,t).

We made the left side of (42) slowly varying by invoking the slowly varying

amplitude and phase approximation. The right side is not slowly varying: it contains

many Fourier components due to the presence of the delta functions which are each

infinitely broadband. This means that while the left side describes an optical field that

varies slowly, the right side can describe an optical field which varies arbitrarily fast.

To smooth the right side we must replace the sum over all electrons by an average

over some sample electrons. Since the fields in the cavity are slowly varying over

several wavelengths by assumption, we only need to sample the electrons in one

section of the micropulse one wavelength of light long and use the local charge

density to weight the average. The result is

4 * l dz
11.
C dt

Ee'« = -2*eK p(z - cM) <— ></ - cM > <
43 >

where p(z - cp^f) is the charge density of the traveling electron pulse, and < ••• > is

an average over sampled electrons.
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We can write (43) in a much simpler form if we change variables to 2 = z - ct

and use the dimensionless time x. The coordinate 2 then follows a point on the

optical pulse traveling at speed c from which the electron pulse slips back at speed

c(1 - pz ). In this coordinate system (let z -> 2) we find that L{dldz + Mcdldt) = d/dx.

We can make (43) dimensionless by making the replacement x,y -^ ^ln/XL x,y where

VXT/n is the characteristic optical mode size. The result is

4 l
dx

Ee'* = -2neKL p < -— > (44)

where we have assumed a long electron pulse so that p can be considered constant.

Also, if the FEL efficiency is small so that changes in y are small, (44) takes the form

''-V? + ^ a = -}<e~^> (45)
4

' l ' dx

where a = la le' , \a I is given by (37), and the dimensionless current density / is

i2.

j =
BNjenKLrp

(46)
-fmc2

To get the wave equation for an FEL with a linear undulator, we make the same

substitution as before, K -> K(J (£) - J^)), in both (37) and (46) (Ref. 3).

Now we will consider the physics contained in (45). First, we see that the

growth of the field amplitude dlal/dr depends on both the current y and the wavefront

curvature through the diffraction operator Vf. This unnecessarily complicates our

discussion, so we will assume for the moment that the light is constructed of plane

waves so that E(x.y.z.f) -> E(z,t) and Vfa -» 0. Then (45) takes the simple form

a = -j<e~'*> (47)

We see that rf / = 0. then a = and the field does not grow. Also, if there Is no

bunching, the electrons are randomly distributed throughout each wavelength of light.

<exp(-/^)> = and again the field does not grow. Equating the real and imaginary

parts of (47) leads to
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^~ = -y'<cos(C + <)>)> (48a)
dx

la 1-^- = y'<sin(^ + (j))> (48b)
dx

which shows that the field amplitude la I grows when the electrons are bunched near

(^ + <t>)
= tc whereas the phase <j) is driven when bunching is near (C + <t»)

= rc/2.

The wave equation (45) and the pendulum equation (36), when coupled, allow

the field and the electron phase space positions to evolve self-consistently. The

pendulum equation describes the bunching of electrons in the presence of the

undulator and radiation fields, while the wave equation shows how much the radiating

bunch changes the optical field. The two equations form a feedback loop which under

the right starting conditions leads to gain, our next topic.

GAIN

Now that we know how the electrons affect the optical field and vice versa we

can translate this interaction to gain. FELs can be separated into two regions: low

current/low gain defined by j «: 1 and high current/high gain defined by j » 1 (Ref. 3).

As it turns out, the low gain behavior we will analyze has a broader range of

applicability, up to at least j ~ 1. An FEL with j
'
= 100 will exhibit high gain

characteristics. The difference between the low and high gain regions is in the growth

rate of the optical field a (see (47)). We will find that the gain mechanisms in these

two regions are different and therefore warrant a distinction between the two.

Gain for either high or low current is defined as

_
la I - a _ Energy Lost by Electrons ,

49)

al Optical Field Energy

where the last equality anses from conservation of energy. Here a is the optical field

strength seen by the electrons upon entering the undulator. Using (3), (4), and (5) it is
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not difficult to show that the change in electron phase velocity due to a change in

energy Ay/y or wavelength emitted Ak/X is

Av = 4kN^-
, (50a)

Y

or

Av = 2nN^
, (50b)

A

so that the energy lost by one electron can be expressed as

AE = i
i^rYmc2 (51)

where E = ymc 2
is the electron energy. The number of electrons in a volume of the

optical mode dV is pFdV, where the filling factor F is the ratio of the cross sectional

areas of the electron beam and optical mode. The optical energy contained in that

same volume dV is E2dV/4n (Ref. 5). After some algebra we can write (49), letting

j -» jF, as

G = -^-<v -v> (52)

which is valid for both low and high current. An average over the phase velocities v,

in the sampled portion of the electron beam is indicated by < ••• >.

In the two subsections which follow we will discuss gain in the low current and

high current FELs, respectively. We will find expressions for the single pass gain in

both cases as a function of x. In FEL design, low gain usually implies an oscillator

configuration while high gam (e.g. j = 10
4

) implies an amplifier in which electrons

execute only one pass before the light is outcoupled. In this case, the dimensionless

power P = la'
2 evolves as P = (1 + G)P and a large G ensures P » P . After n

passes in the oscillator Pn = (1 + G) n P so although G is small, over many passes

the light is amplified until Pn » P .
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In the following analysis the wave equation is in the form (47). In section G we

will discuss the effects of diffraction on the FEL interaction.

1. The Low Gain FEL

In exact analogy with a simple pendulum, the tool used to analyze the slow

electron dynamics (bunching) in the FEL is their (£,v) phase space, one 2rc section of

which is one wavelength of light long.

In the low gain FEL, / «: 1 implies through (47) that changes in the field are

o

small. Multiplying both sides of (36) by C, and rearranging terms leads to

_d_

dx
— - lalsin(£ + <|>) = (53)

and we recall that v = t,. This has a simple solution

v(Q = ± 2H + 2lalsin(C + ()))

1/2

(54)

where H = Vq/2 - la lsin(£ + <{>) is a constant of the motion for each electron starting

a * (Co- vo) anc* determines which phase space path v(Q it will traverse. These paths

are plotted in Figure 2. For electrons starting on resonance v = 0, (54) predicts fixed

points at (£ + <(>) = tc/2 and 3tc/2. Analysis shows that the fixed point at rc/2 is stable

and surrounded nearby in phase space by harmonic orbits (Ref. 6). .The fixed point at

3k/2 is unstable and defines the path characterized by H = la!, called the separatrix,

which is

vs = ±V2Tal 1 + sin(£ + <>)
1/2

. (55)

The separatnx separates phase space into regions of closed and open orbits and has

a peak to peak height of 4\Tal (Ref. 6). It is plotted in bold in Figure 2.

In Figure 3 we have distributed 20 resonant (i.e., v = 0) electrons uniformly

through phase space and show their evolution as X : —> "\. At x = 0, the electron

position is gray and steadily darkens as t -* 1. The phase space simulation solves the
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wave and pendulum equations numerically with j = 1 and initial field amplitude a = 3.

-7t/2 37C/2

Figure 2. The phase space paths v(Q traversed by the

electrons. The separatrix is drawn bold.

Since the electrons are resonant, they start and remain inside the separatrix on closed

orbits. One can clearly see in Figure 3 that the electrons become bunched at C, = n/2,

as predicted at the end of section C. Even though the electrons are bunched,

however, gain is nearly zero because the electrons are bunched at the wrong phase

for field amplitude growth We can see in the figure that as many electrons move up

in phase space and gain energy from the light wave (see (50a)) as move down in

phase space and lose energy to the light wave. Something must be done to upset this

balance in order to get a net gain.

It is interesting to note that Figure 3 shows a very small amount of gam. This

is due to the slight phase shift given by (48b) which causes the bunch to move just
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slightly toward (£ + <!>) = n.

-6

*** FEL Phase Space Evolution ***

j=l ao
=3 VQ

=0

Gain

4>

nun imimiiiiiiiiiiiiiiriiiii

0.13

0.1

-71/2

Figure 3. Phase space simulation of low gain FEL with

electrons starting on resonance. Gain is negligible.

To get an analytic solution for the gain in a low current FEL, expand (36) in

weak fields la I = a <r n with the result

a r
i

v(t) = v + — sin(; + v x) - sin(; ) + (56)
Vo L J

a o f 1 f 1— ]--|cos(2; + 2v t) - cos(2^) + cos(v x) - 1 - v xsm(; )cos(; * v t)

vol 4l J

where a = la(O) 1 and 0(0) = (Ref. 3). When we perform the average in (52) only

the term proportional to al in (56) survives and the result is

2 - 2cos(v x) - v tsin(v x)

G(t) = y (57)
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We see that the gain at the end of the undulator (t = 1) depends only on the initial

phase velocity and current density when the system is in weak optical fields.

In Figure 4 is the result of a simulation which solves the pendulum and wave

equations numerically for many different initial phase velocities and plots the final gain

G(x = 1) and phase shift <|>(t= 1) versus v . The v axis can be viewed as either a

function of electron energy or emitted wavelength through equations (50). In the

figure, v ranges from -12 to 12, / = 1, and a = 0.001 <k n. The gain spectrum is

anti-symmetric in agreement with (57) and has a maximum of G =0.13 at v = 2.6.

The phase curve shows that the shift is maximum for resonant electrons, as discussed

above, and is quite small where the gain is large.

**** Gain and Phase Curves

j = l a =0.001
o

Gain 0.13

0.0

-0.13

0.08

0.0

-0.08
-12 12

Figure 4 Gain and phase spectra for low gain FEL.

Gain is maximum at v = 2.6.
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We have in Figure 5 another phase space simulation using the same

parameters as in Figure 3 except that v = 2.6 in order to maximize gain. In this case

only about half of the electrons are trapped in the separatrix while the other half are

situated on open orbits. A clear bunch of electrons can be seen at C, = n which affords

maximum gain with a small phase shift
(f>.

Compared with Figure 3, more electrons

lost energy to the light wave than absorbed energy from the light wave. It is also true

that if the electrons started at v = -2.6 the result would be maximum absorption as

more electrons would be absorbing energy than losing energy. This behavior could

have been predicted from studying Figure 2: since all electrons travel nearly the same

distance along their orbit (from (36)), starting them higher in phase space (i.e., v > 0)

results in electrons with C, < tc/2 traveling more or less parallel to the £, axis, while

those with ^
> n/2 travel down, losing energy.

-71/2

*** FEL Phase Space Evolution ***

3 = 1 a =3 v =2.6

3M/2

0.13

0.1

Figure 5. Phase space simulation of low gain FEL with

electrons starting at v = 2.6 for nearly maximum gain of

G = 0.12 with a = 3.
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2. The High Gain FEL

In the high gain FEL, j » 1 and changes in the optical field are not small.

Energy conservation cannot be used to determine the gain in this case because there

is a substantial change in both the optical field amplitude and phase. It is still possible

to obtain an analytic expression for the gain in weak optical fields; we merely state the

result:

G(T) = lexp[(ly) 1/3
V3x] (58)

where v is set to zero (Ref. 3). Unlike the low gain FEL (57), here the gain is

exponential in t. We can ascertain the dependence on v by using the same gain and

phase simulation used in Figure 4. Shown in Figure 6 is that simulation with j = 100

and a = 0.001 <sl k.

**** Gain and Phase Curves

j=100 a =0.001o

71

0.0

-71

3.1

0.0

-3.1
-12 12

Figure 6. Gain and phase spectra for high gain FEL

Gain is maximum at v = 1.4, but is still substantial at

v = where the phase shift $ = n/2.
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The maximum gain is G = 71 at v = 1.4, closer to resonance and much higher than in

the low gain case (Figure 4). Note that the phase shift at maximum gain is quite large.

The gain spectrum is nearly symmetric, and substantial gain exists at resonance

where the phase shift $ = k/2.

To understand the mechanism for high gain, a phase space simulation using

j = 100, a = 1, and v = is shown in Figure 7. The electrons which start at

resonance drive the optical phase $, represented in phase space by the shifting

separatrix, and attempt to bunch at £ = n/2 as discussed earlier when considering

Figure 3.

*** FEL Phase Space Evolution ***

j =100 ao
=1 vo

=0

-n/2
_ir;iiui,li;ii;iLi::in:ii;i:T,,;, I

3n/2 x 1

Figure 7. Phase space simulation of high gain FEL with

electrons starting at resonance. Final gain G - 62 = e
4

and the phase shift o = Jt'2. The separatnx is shown

growing with the field strength la I and shifting left as the

phase o grows.

30



It is the phase shift § = nl2 which allows gain as the relative electron bunch phase

(£ + (J>)
= 7i drives the optical field amplitude. This leads to exponential gain (linear on

the logarithmic plot of Figure 7) as predicted by (58).

To summarize, when / « 1 we must start the electrons at v > in order that

they bunch near (£ + ()>) = n and gain results. For an FEL with / > 1 , electrons at

v = drive the optical phase with the high current until the bunch is situated near

(£ + ((>) = K. In the case of low gain, the optical phase shift is unimportant and small; in

the case of high gain it is a crucial aspect of the interaction.

3. Gain Degradation Due to Electron Beam Quality

In section C.2 of this chapter, we discussed transverse electron beam quality

and deduced two measures, oe and ave , from the emittance. The longitudinal beam

quality has a measure

oG = AnN & (59)
Y

which is the standard deviation of a Gaussian spread in energy (see (17)), and Aymc2

is the rms energy difference from the resonant energy (Ref. 3).

Consider the low gain spectrum in Figure 3 again. The full width of the main

positive gain portion at half the maximum is approximately n and the distance from

maximum gain to maximum absorption is approximately 2k. Therefore, if the spread in

phase velocities of the electron beam Av = ic, we should expect serious gain

degradation as many electrons will be injected into the undulator with phase velocity

corresponding to less than maximum or even to negative gain. Inspection of (50a)

and (16) shows that Av has contributions from oe . ove , and oG .

In Figure 8 is a phase space simulation using the same parameters as those

used in Figure 5 except that a small energy spread oG = 1 has been included. Only

the final phase space positions of the electrons have been plotted. The electrons are
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spread through phase space and bunching has been degraded. Gain has been

reduced to G =0.10.

-6

*** FEL Phase Space Evolution ***

j = l a =3 v =2.6 C_=lO O G

''•":?*'/'
. » •

'-""j; ^S"&l..v*'%

Gain

\^ -'^lipP *

":;i;;!i;;":iir,iiiiii:;!lilli:illlii

0.13

0.1

-71/2 C 3TC/2

Figure 8. Phase space simulation of low gain FEL with

energy spread oG = 1. Gain is reduced to G =0.10.

Compare with Figure 5.

In the high gain spectrum of Figure 6 we note that the gain spectrum bandwidth

for j = 100 is approximately 2n. In general, this width is proportional to y

1 6
in the high

gain region (Ref. 3). Since there are no regions of absorption and the spectrum is

about twice as wide as that of the low gain example, we would expect the high gain

FEL to be more resistant to beam quality effects. However, when increasing the

undulator length, beam quality measures oG , (59), oe , (18). and o v? . (20) increase

proportional to N. This means that the quality of the electron beam is magnified by a

long undulator Since j °- IN 3
, where / is the peak current, high gain is most easily
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and often obtained by using a long undulator. In addition, higher peak current / from

the accelerator leads to poorer beam quality, so that either way the designer tries to

maximize gain the problem with beam quality gets worse. When trying to get all one's

light amplification in a single pass, little gain degradation can be tolerated. Indeed this

may become one of the major drawbacks of using an FEL amplifier as a high power

weapon.

In Figure 9 is a phase space simulation using the same parameters as those

used in Figure 7 except in this case oG = 1. Only the final separatrix and electron

phase space positions have been plotted. The electrons are spread throughout phase

space and bunching has been degraded. Gain has been reduced from G = 62 to

G = 50.

-Jl/2 3rt/:

Figure 9. Phase space simulation of high gain FEL with

energy spread oG = 1. Gain is reduced to G = 50.

Compare with Figure 7, where G = 62.
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In both Figures 8 and 9 we have only included the energy spread cG

contribution to beam quality. Clearly the degradation would be even worse if we also

included the effects of emittance.

F. SHORT PULSES

It was mentioned during our derivation of the wave equation that the electrons

slip back relative to the light pulse at speed c(1 -
(3Z ). From the definition of

resonance, we know that the distance between the leading edges of the electron and

light pulses at x = 1 is NX. This distance is called the "slippage length." If the

electron pulse length is on the order of the slippage length, the pulse is considered

short (Ref. 3). In this case we cannot make the long pulse assumption in (44)

because each section of the light pulse sees the charge density changing as the

electron pulse slips past.

In an optical resonator of length S, it takes time 2Slc for the optical pulse to

make one round trip. Let the desynchronism d be the distance between the light and

electron pulses at x = on each pass (Ref. 3). We normalize d and the electron

pulse length o7 = le /(NX) to the slippage length. At exact synchronism, unbunched

electrons slip back past the light pulse as x : -> 1 , bunching occurs, but only the rear

of the light pulse gets amplified. On successive passes the delay in bunching

becomes longer and the amplification moves further back on the light pulse. Since

only the rear of the light pulse is being amplified while the losses (as determined by

the resonator quality factor Q) are the same at all points in the pulse, its centroid

moves at a speed slower than c. This is called "lethargy," and ultimately will lead the

pulse out of the region of gain (that is, it won't overlap the electron pulse) and the

pulse amplitude will vanish (Ref. 3).

To compensate for the effects of lethargy a small amount of desynchronism

must be added. This is accomplished by reducing the path length S that the light
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pulse must travel by adjusting the length of the optical cavity. In this case,

d = -AS/(NX) (Ref. 3).

Simulations of an FEL using picosecond electron pulses will be discussed in

Chapter III. There we will explore the effects of desynchronism on the power

evolution.

G. FEL WITH GAUSSIAN OPTICAL MODE

In section E on gain we discussed the interaction of the electron beam with

light approximated by plane waves. An optical cavity bounded by spherical mirrors

supports Hermite-Gaussian (and other) modes, which are solutions of (45) instead of

(47) and accurately describe the laser beam inside and outside the cavity (Ref. 7).

The optical beam can be constructed from any number of these modes, but the one

most desired in a weapons laser for its propagation characteristics is called the

fundamental Gaussian mode, or just Gaussian mode.

The usual Gaussian mode as given in Ref. 7 can be written in terms of our FEL

dimensionless parameters. The result is

aG ~ —TT e e
W(X)

(60)

where

<t>G (T) = -tan
1

t - t.

(61)

is the phase shift of the Gaussian mode relative to that of a plane wave.

2

W2^) = 1 +
x- x.

(62)

is the square of the mode radius, which is normalized to the mode waist radius Wq ,

and
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z = w$ (63)

is the dimensionless Rayleigh length (Ret. 3). The mode waist position is zw . Radial

dimensions are normalized to VLA/rc, the characteristic mode size. We see in (62) that

z is the distance over which the mode area doubles. In a symmetric optical cavity

with spherical mirrors a distance S apart and radii of curvature R, the dimensionless

Rayleigh length is given by z = (2SR - S2
)

Vz
/2L where L is again the undulator

length (Ref. 7). The Rayleigh length z and the waist position xw completely

characterize the Gaussian mode in the optical cavity.

The amplitude of the Gaussian mode la I is a maximum at x = xw where

w2
(x) = 1. It decreases away from the waist in both directions and is a minimum at

both x = and x = 1 (if xw = 0.5). At any time x, the amplitude decreases in the radial

direction as a Gaussian, hence the name. The phase of the Gaussian mode §G (61)

contains two terms. The first term provides a phase shift, called the Guoy phase shift,

relative to the plane wave, and switches sign at the waist (Ref. 7). The second term in

(61) decreases the phase shift for positions off-axis which creates the wavefront

curvature necessary for focussing the beam at the waist.

In the electron phase space, the term aoJw{x) causes the height of the

separatrix to increase as x : -» xw and then decrease as x : xw -> 1 . The effect is

proportional to w~ Vl
{x) (from our knowledge of the separatrix height) and complicates

the phase space paths. The phase of the Gaussian mode (61) is continuously shifted

as x : -> 1 . The shift has the sign opposite to that caused by the FEL interaction in

(48b). It is therefore represented in phase space by the separatrix shifting to the right

as x : — 1 . Looking at Figure 2 again, we can predict that the electrons will have to

start at a phase velocity v > 2.6 in order to compensate for the shift and still bunch at

the correct phase for gain. (Compare this to the case of the high gain FEL where the

phase velocity had to be lowered in order to bunch at the correct phase.)
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In order to observe the effects of the Gaussian mode on the FEL interaction,

assume z » 1, nearly plane waves, and expand (61) and (62) to first order in (1/z ).

The phase becomes
tyG ~ -(x - iw )/z , and w(z) = 1. The pendulum equation (36) in

oo

the presence of the Gaussian mode is C, = \aG lcos(£ +
<J)G ) which for z » 1 becomes

oo
r2,

C,
~ a e ° cos Co+—- +

zo

1
v - —

zo

(64)

when expanded in weak fields to first order in a (Ref. 3). Comparing (64) with (36)
oo

we see three distinct differences. First, the amplitude of the phase acceleration £

decreases for electrons off axis because they see a weaker field strength

la I
—> a exp(-r2/z ). Second, there is a shift in the initial phase C, of all electrons in

the amount xwlz . This is inconsequential since the electrons are initially distributed

uniformly throughout phase space. The last difference is in the phase velocity, which

is decreased by Av = 1/z . This leads to a wavelength change of AAA = M(2kNz )

from (50b). This also requires an increase in the initial phase velocity for maximum

gain to v™3* = 2.6 + 1/z in the low gain FEL. This effect is caused by the optical

phase shift (61) and is shown in Figure 10. The figure is the result of a simulation

similar to that in Figures 4 and 6 except that the finite size of the optical mode is

included. Here the Rayleigh length z = 5 and maximum gain is found at

v = 2.9 = (2.6 + 1/5).

The presence of the Gaussian optical mode produces measurable effects in the

performance of the FEL. This is the theme of the bulk of this work, including the final

chapter on Compton backscattering where we calculate the photon emission rate for

electrons in the Gaussian field of a laser.
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;
*** FEL 3d simulation, single-pass gain ***

3=1 Zo= 5 a =0.01
o

Gain

\
\ /\ /

0.07

0.0

-0.07
-12 12

Figure 10. Gain spectrum for low gain FEL with Rayleigh

length z = 5. Maximum gain is achieved at v = 2.9,

shifted from v = 2.6 by the Gaussian mode.
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III. SIMULATIONS OF FIREFLY 1KWFEL

A. BACKGROUND

The FIREFLY (Far Infrared FEL) 1kW FEL at Stanford University was proposed

in 1994 as an upgrade to the existing Infrared FEL at Stanford University (Ref. 8).

With four new 10 MeV accelerator structures and a 5 MeV electron injector, an

electron beam with energy 45 MeV could be generated. The electron injector

operating at 1 1 .8 MHz would produce an average current of T = 1 ma, and the

average power in the electron beam would be Pe - TV = 45 kW. A good measure of

the maximum efficiency of an FEL, i.e., how much energy one can extract, is the gain

spectrum bandwidth. Considering Figure 4 and (50b), we find that Ay/y = 1/(2 A/). If

we assume that we can extract the full Ay/y = 1/(2A/) from the beam with N = 25, then

the average power out of the cavity would be P = Pe /(2N) = 900 W. This average

power would be almost 100 times greater than the world's most powerful FEL, and it

was estimated this could be done for only one million dollars with existing technology.

The proposed FEL and two variants with lower electron beam energies of 25

MeV and 10 MeV were simulated. All other parameters were kept the same and are

listed in Table 1

.

B. SIMULATIONS AND RESULTS

Because all three FELs simulated have emission wavelengths X in the far

infrared, the charactenstic mode size \LXjk is large enough that diffraction (i.e., the

Gaussian mode) should not dominate the interaction. The slippage length A/?.,

compared to the electron pulse length, is also large, so the effects of short optical

pulses must be addressed. (Some basic consideration of short pulse effects was done

in section F of Chapter II.) To study short pulse effects, simulations following

longitudinal multimodes were used. These simulations divide the optical pulse into a
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number of fixed longitudinal field sites, or bins, a(z) (Ref. 3). The simulations are

called "longitudinal multimode" because dividing the optical pulse into longitudinal

sites a -> a(z) is equivalent to a -» a(kz ) in Fourier space; the number of sites z is

equivalent to a number of modes kz .

1 II III

Beam Energy 45 MeV 25 MeV 10 MeV

Peak Current 40 A 40 A 40 A

Micropulse Length 2.1 ps 2.1 ps 2.1 ps

Undulator Type Linear Linear Linear

K 1.1 1.1 1.1

N 25 25 25

^0 6.0 cm 6.0 cm 6.0 cm

X 8.4 fim 26.6 ^im 156.7 |im

J 1.7 2.9 7.2

*z 3.2 1.0 0.2

Table 1. Parameters for FIREFLY 1kW FEL (column I)

and two variants (columns II and III) used in simulations.

The slower moving electrons slip back past the optical pulse to sites z - t and interact

with a number of field sites corresponding to the slippage distance NX (recall that z is

normalized to the slippage distance). Conversely, each field site a(z) interacts with a

length NX along the electron micropulse as the micropulse slips back. We generalize

the pendulum (36) and wave (47) equations to include the slippage:
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(65)

&z =~Jz^<e ~">*-k . (66)

As x : -> 1 in increments of At in the simulation, (65) and (66) show how the field

changes at site z are caused by the electron dynamics at the micropulse site z + s At,

where s = 0, 1, 2, ...,N
t

is an integer and N
t
= 1/At is the total number of time steps,

and vice versa.

Contained in Figure 11 is the output from a simulation of the 1 kW machine,

whose parameters are listed in column I of Table 1. The dimensionless current

density is j = 1 .7, the micropulse length is oz = 3.2, cavity losses are determined by

= 100, and the desynchronism d = 0.03 is large (see Chapter II section F for

definition of d).

**** pel Pulse Evolution ****

j=1.7 ff
2
=3 - 2 Q=100 d=0.03

|a( z,n) 1 25 P(v / n) f (v,n)

2000

A T 1 1 T

I mm-

&V'.
1 *

:S.

^H 1 j

^^K( ^B 3
i ^Hf

-20 x 20 -19 V 19 -19 V 19
j<Z-T> G(V)

T«0
iP(n) ! 1

-20 20 -19 19 2000

Figure 11. Longitudinal multimode simulation of

FIREFLY.
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The parabolic electron pulse is drawn in the lower left window at x = and at x = 1 to

illustrate slippage. Above the electron pulse is plotted the optical field amplitude

la(z,n)l at each pass n. The scale ranges from zero in black to the maximum in

white; a contour line is drawn at the median field amplitude. Above the field evolution

is plotted the final optical field amplitude la (z,n = 2000)1 in black. At the bottom

center is drawn the gain spectrum (57). Above this is the optical power spectrum

evolution P(v,n), with the final power spectrum P{v,n = 2000) drawn on top in black.

The power spectrum P(v,n) is the Fourier transform of the square of the optical field

\a{z,n)\
2

at each pass n. The phase velocity v in the power spectrum is used in the

sense of (50b); that is, it represents the wavelength A. so that P(v,n) shows the

linewidth of the radiation. The total power evolution P{n) is plotted at lower right in

the figure. Above this is plotted the electron phase velocity distribution f(v,n). The

distribution f(v,n) is a projection of the final electron phase space positions (£,v) onto

the v-axis at each pass n. As such, v in this plot is to be understood in the sense of

(50a); that is, it represents the electron energy ymc 2
so that f (v,n) is interpreted as an

energy spread.

Having described all the plots in Figure 11, we now interpret their features.

The large desynchronism has caused the optical pulse \a(z,n)\ to be artificially long

by advancing the front edge of the pulse ahead of the electrons. The electron pulse

amplifies only the trailing edge of the optical pulse on each pass. This leads to

reduced coupling; the peak field strength is only lai = 25. As evidenced by the power

spectrum P(\\n), the long, smooth optical pulse leads to a narrow linewidth. The

electron phase velocity distribution f(v,n) does not evolve any further after the first

few hundred passes. At saturation, the electrons reach the bottom of the separatnx in

phase space (Ref. 3). This means that the electron distribution f (v,n) should have a

width of about 4\TaT = 18 at saturation, the peak-to-peak height of the separatnx at

la I = 20. the final field amplitude. In the figure, the width of f(v,n) is about 18.

showing good agreement. The power P(n) at each pass n is obtained by integrating
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over the optical pulse \a(z,n)\ 2
. The power evolution P{n) plotted at lower right

shows that a steady state is reached after approximately n = 700 passes where

P(n) = 91.

Plotted in Figure 12 are the results of several simulations like that above. The

steady state dimensionless power is plotted versus the desynchronism.

i

1500 -

S|

1000 - \
500 - V^^

- < •

0.005 0.01 0.015 0.02 0.025 0.03

d

Figure 12. Plot of outcoupled dimensionless power

versus desynchronism for FIREFLY.

The maximum on the curve at d = 0.0005 corresponds to an actual output average

power P b 900 W, the desired output, but requires the injector to operate at 23.6 MHz.

or double the rate discussed earlier. Evidently the short pulses lead to reduced

coupling between the electrons and optical field, lowering FEL efficiency. Doubling the

operating frequency of the electron injector was proposed in Ref. 8 as a follow-on to

the 1 kW upgrade for the purpose of attaining 2 kW average power. Note that the
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maximum in Figure 12 is rather sharp. Since the slightest change in d can produce a

large change in the output, the FEL is less stable when operated in this region (Ref.

3).

The FIREFLY variant listed in column II of Table 1 has a shorter dimensionless

electron pulse length oz than that in Figure 11. The output of a simulation with

j = 2.9, oz = 1, Q - 100, and d = 0.005 is shown in Figure 13. The features of the

plots show the occurrence of the trapped-particle instability (Ref. 3).

**** FEL pulse Evolution ****

j=2.9 a
2
=l Q=100 d=0.005

la( z # n) | 0| 104 P(v # n) f (v,n)

2000

25 2000

Figure 13. Longitudinal multimode simulation for the

variant of FIREFLY listed in column II of Table 1.

This instability occurs when the field amplitude la 1 becomes so strong that electrons in

phase space traverse their entire path (see Figure 2) dunng a single pass through the

undulator. executing a synchrotron oscillation with frequency v5 = \Ta~ = 2n (Ref. 3).

In real space, this oscillation represents motion superimposed on the electron
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trajectory and leads to emission into sidebands v ± v s (Ref. 3). As these sidebands

grow, the FEL power will increase and the fields will get stronger, causing more

electrons to execute synchrotron oscillations, etc. At least four sidebands can be seen

in the power spectrum P(v,n) in Figure 13. These sidebands modulate the optical

pulse envelope \a{z,n)\ as shown, and the increased field strength causes the wide

electron distribution f(v,n). In this case, the instability has imposed a periodic

structure on the optical field envelope la(z,n)l and the power spectrum P(v,n) which

results in oscillations in the total power P(n) over many passes n.

Figure 14 plots the dimensionless power versus desynchronism from several

simulations like that of Figure 13.
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Figure 14. Plot of dimensionless outcoupled power

versus desynchronism for vanant of FIREFLY listed in

column II of Table 1.
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We see from the plot that Figure 12 with d = 0.005 lies in the transition region in the

desynchronism curve, where the fields are strong enough to cause the trapped-particle

instability, but where operation of the FEL is relatively stable. The peak in this curve

at d = 0.003 corresponds to an outcoupled average power of P = 140 W.

To further illustrate the effects of slippage, the example listed in column III

represents FIREFLY operating at a much longer wavelength X= 156.7 \im. The

slippage length is therefore long and leads to a small value of oz
= 0.2. Figure 15

contains the result of a simulation using /' = 7.2, az = 0.2, Q = 100, and the very small

value of d = 0.0005.

**** pEL Pulse Evolution ****

j=7.2 a =0.2 Q=100 d=0.0005
z

a(z,n)

6000

f (v,n)

-4 z 4 -101 V 101 -101 v 101
j(z-x) j|G(v)

T=0i: + l|P(n) 520

-4 4 -101 101 6000

Figure 15. Longitudinal multimode simulation for variant

of FIREFLY listed in column III of Table 1.

The small desynchronism means that, unlike in Figure 11. the light pulse a(z,n) has

not been artificially lengthened. The optical pulse reaches steady state with a length
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comparable to the electron pulse length shown in the plot at lower left. The fields are

strong and the trapped-particle instability again leads to structure in the optical pulse.

We should note here that the spikes to the left of the main optical pulse are only about

one wavelength of light in length. Because this would violate the slowly-varying

amplitude assumption in the wave equation (47), these may be meaningless. The

short, modulated optical pulse results in a broad power spectrum P{v,n) (note the

scale in v compared with that in Figure 13). The strong fields also result in a broad

electron distribution. Maximum power P(n) = 900 is achieved at n ~ 1500 passes, but

steady-state P(n) = 520 isn't reached until n ~ 4000 passes which is predicted to take

about 0.3 ms in FIREFLY.

Figure 16 plots power versus desynchronism for column III of Table 1.
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Figure 16 Plot of outcoupled dimensionless power

versus desynchronism for variant of FIREFLY listed in

column III of Table 1.
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We note that d = 0.0005, that used in Figure 15, is the location of the peak in this

curve and corresponds to an average power of P - 17 W.

C. CONCLUSIONS

The operational characteristics of far infrared wavelength FELs driven by short,

picosecond electron micropulses will be determined by short pulse effects. The

desynchronism coupled with the cavity Q will affect the length and structure of the

optical pulse. This in turn determines the width and structure of the power spectrum.

Based on our simulations of the 1 kW FEL, as depicted in Figures 11 and 12,

the goal of 1 kW average power can be achieved, but at double the electron injector

duty cycle first proposed. More simulations should be done to substantiate this

possibility. Doubling the injector duty cycle was proposed in Ref. 8, but as a follow-on

to the 1 kW proposal as a means of achieving 2 kW. We also note that the trapped-

particle instability will probably occur.
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IV. TRANSVERSE EFFECTS IN UV FREE ELECTRON LASERS

A. BACKGROUND

In an ultraviolet free electron laser (UVFEL), the characteristic optical mode

size VH/7U tends to be small because of the short optical wavelength X. For example,

if X = 200 nm and L = 3 m, ^lLX/n = 0.4 mm. This is also approximately the size of

the electron beam. For the ultraviolet FEL, the effects of the spatial extent of the

electron beam as compared to the optical mode are of concern.

The UVFEL under consideration in this chapter is that proposed by the Laser

Processing Consortium (LPC) at Thomas Jefferson National Accelerator Facility

(TJNAF) in Newport News, Virginia (Ref. 9). The LPC is a group of industry and

university scientists and engineers interested in an efficient, reliable, coherent UV light

source for processing materials. On the order of 100 kW of UV light is needed to

process commercial products ranging from nylon to steel. The parameters for the

UVFEL proposed in Ref. 9 are listed in Table 2.

Beam Energy 200 MeV

Peak Current 270 A

Micropulse Length 0.25 ps

Undulator Type Linear

K 0.95

N 72

*o 3.3 cm

X 204 nm

Table 2. Parameters for the LPC proposed UVFEL.
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In this chapter we analyze the LPC UVFEL using transverse multimode

simulations. These simulations are described in section B. We use these simulations

in section C to study the effects of the optical mode size on FEL gain. In section D we

study the effects of electron beam focussing on FEL gain.

B. TRANSVERSE MULTIMODE SIMULATIONS

In Chapter III we extended the pendulum and wave equations in the z-direction

in order to properly simulate longitudinal multimodes by dividing the optical pulse into

z sites. To simulate transverse multimodes, we make the same transition in the x-

and y-directions. The optical field is extended to sites in x and y so that a —> a{x,y).

Generalizing the wave equation (45) and the pendulum equation (36) gives (Ref. 3):

4 x
3x

£ (x.y/O =

a (x ,y ,t) = -<j exp(-/ C,(x ,y ,x))>(X ,y,x) (67)

a{x,y,x) cos £(x,y,T) + <t>(x,y,T) (68)

The transverse dimensions are normalized to the characteristic mode size vXDtl The

set of equations (67) and (68) are fully self-consistent in three dimensions (x,y,x).

For the UVFEL represented in Table 2, we calculate an electron pulse length

slightly greater than five slippage distances cz = 5.1. Therefore, it can be assumed

that slippage will not be an important consideration, so that we may follow only one

representative longitudinal site as in (67) and (68).

In section G of Chapter II, we discussed the fundamental Gaussian mode but

mentioned that in general any number of Hermite-Gaussian transverse modes are

present. In order to model the evolution of the FEL from weak fields through

saturation, these higher-order modes are included as the FEL interaction amplifies and

distorts the optical mode. Both the optical field amplitude and phase can be altered

(Ref. 3). An example of this is shown in Figure 17.
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Figure 17. Optical multimode evolution from weak fields

through saturation.
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Figure 17 shows the evolution of the FEL from weak fields a = 0.0001 through

saturation using j = 20 and a small energy spread oG = 0.5. The Rayleigh length for

the cavity is z = 0.5. The top set of plots show the FEL oscillator after n = 12

passes. The electron phase space plot shows no noticeable bunching and the final

gain G = 0.94 is in steady state (i.e., G(n) constant ) with power increasing

exponentially. At right is shown the optical field amplitude between the mirrors

la(x, t)I. The mode is clearly distorted from a fundamental Gaussian mode with the

peak field (in black) located at x = 1 where single pass gain is the maximum. Moving

down the set of figures, the electron phase space begins to exhibit bunching at

n = 24. The bunch descends along the v-axis, indicating energy loss, and near

saturation at n = 28 it starts to ascend taking energy back from the optical field. At

saturation {n = 40), the electron bunch is clearly moving up in phase space at x = 1.

The motion of the electron bunch through phase space, caused by the strengthening

fields, is attended by a drop in final gain G(x=1) as the electrons are absorbing light at

the end of the undulator. This means that on each pass, G{x) peaks at x < 1 along

the undulator and the peak field moves back along the undulator. Scanning down the

page through the plots of la(x,x)l, we see the peak field strength moving back along

the undulator. At saturation, the peak gain per pass is nearly at the middle of the

undulator and the final gain is reduced to G =0.0034. The optical field \a(x, t)I

resembles the fundamental Gaussian mode at saturation where the gain is low.

The evolution of the distorted optical mode to the Gaussian requires the use of

the transverse multimode simulations described above. Multiple transverse modes are

included in the simulation to construct the distorted optical fields of Figure 17 for the

same reason it takes a large number of sine waves to synthesize a square pulse in

Founer analysis.
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C. OPTICAL MODE SIZE EFFECT ON FEL GAIN

It has been shown that the Rayleigh length which optimizes gain for a filament

electron beam (i.e., ae =0) is z = 1/Vl2 = 0.3 (Refs. 3, 10). This is the Rayleigh

length which maximizes the average filling factor F (averaged along the undulator

length) by minimizing the volume occupied by the Gaussian optical mode around the

electron beam. Reference 10 also discusses gain in a Gaussian mode for non-zero

electron beam radius, but again using arguments based on the filling factor. The

conclusion, not surprisingly, is that maximum gain is achieved when the Rayleigh

length is chosen such that the electron beam fits inside the optical mode (recall

zo = wo)- But in the case of the UVFEL, it may be necessary to have an electron

beam bigger than the optical mode because of the small mode size VXLTru. In that

case, one cannot quantify gain in terms of the filling factor, which may be greater than

one. The three dimensional simulations described in the previous section are used to

find the influence of the Rayleigh length on FEL gain.

Figure 18 shows the result of a three-dimensional, transverse multimode

simulation of the UVFEL parameters listed in Table 2. The corresponding

dimensionless parameters are current density / = 30 with F is no longer included in j,

v = 4.5 is the optimum initial phase velocity, the Rayleigh length is z = 0.3,

a = 0.001 is the initial optical field amplitude, the cavity loss is Q = 5, oe = 0.45 is the

dimensionless electron beam radius, oe
= 0.9 is the angular spread, the energy spread

is oG = 1.3, and u^ = 1.0 is the betatron frequency. The dimensionless emittance

c = 0.43 corresponds to an actual normalized emittance zN = 11 it mm-mrad

(f* = Ytrms) The plot at top left shows the evolution of the optical field amplitude at

the end of the undulator with each pass la(x,n)l. To the nght is plotted the final

optical field amplitude at the nght-hand mirror la(x,y)l. The optical field between the

mirrors la(x,i)l at y - is plotted in the center; the tick marks at x = and t = 1 show

the beginning and end of the undulator. Overlaid on this plot are the positions of a
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random sample of the electrons used in the simulation. In this figure, ae /w - 0.8 and

the electrons near the edges of the Gaussian mode see weaker optical fields and thus

a degraded interaction (see (60)).

TRANSVERSE FEL MODEL
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Figure 18. Transverse multimode simulation of UVFEL.

Gain is degraded due to large electron beam

radius/optical mode waist radius ratio ce /w = 0.8.

The plots along bottom show the electron phase velocity distribution at each pass

f(\\n), the final phase space positions (£,v) of a sample of electrons, and the power

P(n) and gain ln(1+G(n)) evolutions. The gain G(n) is plotted at the end of the

undulator G(t=1) after each pass n. These plots show FEL gain in steady state (i.e..

G(n) approximately constant) with final gain G = 0.75 and power increasing

exponentially. Electrons in phase space are spread out due to cG and o„ so that

bunching can barely be seen at £ = n even though the limit of weak fields ia I = n has

been reached.
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The results of many simulations like that in Figure 18 were used to plot gain

normalized to the maximum one-dimensional gain, G = 0.135y'F, where

F = 7ia|/(z + 1/1 2z ) is the average filling factor, versus Rayleigh length (Refs. 3, 10).

The result is plotted in Figure 19.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 19. Plot of normalized gain versus Rayleigh

length for UVFEL. Normalized gain is minimum where

optical mode volume is minimum z = 0.3.

The first feature to note in the figure is that for the UVFEL, z = 0.3 corresponds to the

minimum normalized gain because the optical mode volume is minimized. The optical

mode volume must be large enough to envelope the electron beam Decreasing the

Rayleigh length below z = 0.3 causes the mode to expand quickly away from the

mode waist. This makes the mode large at the ends of the undulator. enveloping the

electron beam, and increases normalized gain. Increasing the Rayleigh length from
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z = 0.3 makes the optical mode larger everywhere and increases gain until the mode

gets so large, z = 0.9 in this case, that electrons see weaker fields everywhere and

gain is reduced. For a larger electron beam, the optimum value of z for normalized

gain would be larger than z = 0.9.

D. ELECTRON BEAM SIZE EFFECT ON FEL GAIN

Now, given that the Rayleigh length of the optical cavity has been chosen, how

is FEL gain affected by the choice of electron beam radius? Since co
p
= 1 .0 for this

UVFEL, the electron's betatron trajectories are nearly straight lines, allowing them to

be focussed at the undulator center using external magnets. Keeping emittance

e = ce ^[o^ fixed, decreasing the electron beam radius at the waist increases the

angular spread and degrades the interaction, so there must be a limit to how small

one can focus the electron beam. In all simulations, the Rayleigh length is held fixed

at z = 0.5.

Figure 20 contains the output of a simulation of the UVFEL electron beam with

e = 0.43. In this example, we have reduced the electron beam radius to oe = 0.3,

which increases angular spread to oe
= 2.1. We also were required to increase the

current density to / = 68 in order to keep peak current constant. The optimum initial

phase velocity is v = 4.3 and all other parameters are the same as those in Figure

18. The phase space plot (£,v) is dominated by the (exponential) angular spread

which indicates ae has been made too small. In the plot of la(x,x)l in the center, one

can see the electrons focussed to ce = 0.3 at the center of the undulator, but the large

angular spread cames many electrons outside the optical mode at t = and t = 1

.

This leads to gain degradation.

Figure 21 plots the normalized gain versus electron beam radius for three

different emittances: (a) c = 0.28, (b) £ = 0.43, and (c) £ = 0.6. (The simulation in

Figure 20 is from curve (b).) We see in the curves that decreasing the electron beam
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radius from oe
= 1 .0 increases gain as more electrons are enveloped in the optical

mode. The beam radius can be made too small, however, causing gain to decrease

because of the increasing angular spread.
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Figure 20. Transverse multimode simulation of UVFEL.

Electron beam focussed at x = 0.5 but angular spread

causes beam to expand outside optical mode at i =

and 1.

The optimum electron beam radius, and the peak gain at that radius, depend strongly

on the beam emittance. With better emittance. curve (a) in Figure 21, the optimum

electron beam radius is small. c e
~ 0.3. and peak gain is increased to G/G = 66%.

Increasing emittance causes the optimum o e to grow larger and the maximum to

become more broad until (curve (c)) the maximum gain is only weakly dependent on

a e due to the large angular spread at any radius. This maximum gain is reduced to
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GIG Q ~ 10% at oe =0.6. The expected emittance in the LPC UVFEL is e = 0.43,

curve (b). We find that the optimum electron beam radius is ae = 0.4, slightly smaller

than that proposed.
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Figure 21. Plots of normalized gain versus electron beam

radius for three different beam emittances: (a) e = 0.28,

(b) e = 0.43, and (c) £ = 0.6.

E. CONCLUSIONS

The small characteristic mode size of the short wavelength UVFEL makes the

electron beam/optical mode overlap a crucial consideration. Making the optical mode

larger by either decreasing or increasing the Rayleigh length from z = 0.3 results in

increased normalized gain for a given electron beam radius. This is an important

result for UVFELs. It shows that it is not necessary to have the electron beam

enveloped by the optical mode throughout their interaction. With Rayleigh length fixed.
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focussing the electron beam to a smaller radius will increase gain until the angular

spread, which must increase as the electron beam radius is decreased, degrades the

interaction and gain is reduced. With improvements in emittance, the optimum

electron beam radius is smaller and the peak FEL steady-state gain is significantly

increased. We find the optimum electron beam radius for the LPC UVFEL is oe = 0.4.
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V. FELS WITH SHORT RAYLEIGH LENGTH

A. MOTIVATION

The problem of high power density on optical cavity mirrors is shared by both

UVFELs and high average power FELs, the former due to its short wavelength and

therefore a small diffraction rate, the latter due to extremely high (= 100 MW)

intracavity average power. This problem could be solved by designing a long optical

cavity with z = 0.3, allowing space for diffraction to make the beam spot on the

mirrors large. Another way to make a large spot is to use a cavity with a short

(z < 0.3) Rayleigh length. When the FEL has limited space for the optical cavity (on a

ship, for example), the second method of mirror protection is particularly attractive.

As an example of the effect of the Rayleigh length on mirror power density,

consider a 1 MW FEL at X = 1 ^im and Q = 5. Simple calculations based on (60)-(63)

show that the mirror power density in a 20 m long cavity with z = 0.2 is about

1500 kW /cm 2
, which is quite large. However, if we reduce the Rayleigh length to

z = 0.02 and shorten the cavity length to 10 m, the mirror power density is reduced to

about 600 kW/cm 2
. That is, we can reduce the power density on the mirrors by more

than a factor of two and cut the cavity length in half by reducing the Rayleigh length by

a factor of ten.

Reducing the Rayleigh length is accomplished by making the mirrors larger and

their radii of curvature smaller (recall z = {2SR - S2
)

,/?

/2L). allowing the light to cover

a large mirror while focussed to a small waist at the center of the cavity. The stability

cntena for a symmetric optical cavity, < (1 - S/ft)(1 - S/R) <1, reduces to z 2
£

(Ref. 7). Therefore, as long as there is a Rayleigh length (i.e.. z > 0). the optical

cavity will be stable.

In section G of Chapter II, we discussed the physics of the FEL interaction in

the Gaussian optical mode. We discussed how the optical field amplitude \aG \ is
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greatest at t = t
vv , which causes the phase space separatrix height to increase as

x : -> xw then decrease as % : xw -» 1. This effect, which is proportional to w_1/2
(t),

complicates the phase space paths and will be exacerbated by a small Rayleigh

length. The short Rayleigh length implies a small mode waist where the optical field

amplitude will be much larger than at the ends of the undulator. We also saw how the

phase of the Gaussian mode caused the separatrix to shift to the right as x : -> 1

.

This requires the initial phase velocity for maximum gain to be increased from v = 2.6,

the value found when using the plane wave approximation. For z = 0.1, the phase

shift for on-axis electrons is A<j) = <t>(x=1) - §{%=0) = 0.9tt, and is smaller for off-axis

electrons. With a small Rayleigh length, the wavefront curvature has to be larger in

order that the light be focussed to a small waist and rapidly expand to cover the

mirror.

Operating the FEL with a short Rayleigh length is not the optimum design. The

previous paragraph showed how the interaction of the electrons and the light changes

with Rayleigh length. This concept has never been studied before now, precisely

because the design is not optimum. In this chapter we will show the consequences of

using a short Rayleigh length. Since we will analyze the case z <1, we cannot

expand (60) in 1/(z ) as we did in Chapter II, but must use simulation instead. We will

analyze the UVFEL of Chapter IV first, both the single pass gain G(x) and the gain

evolution G{n) over several passes when in steady state. Next we present a MW-

class FEL design based on the short Rayleigh length concept and simulations of

same.

B. UVFEL WITH SHORT RAYLEIGH LENGTH

We first test the short Rayleigh length FEL concept by simulating the LPC

UVFEL. which has parameters listed in Table 2.
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1. Single Pass Gain

We study the single pass gain G(x) in the UVFEL using transverse multimode

simulations like those discussed in the previous chapter. In this case, however, since

only one pass is simulated, cavity mirrors do not enter. The optical field is initialized

as a Gaussian mode and can only evolve by mode distortion caused by the electron

beam within the single pass. Contrast this with the multiple pass simulations

presented in the previous chapter in which the optical field, entrained by the mirrors,

evolves self-consistently over many passes.

Plotted in Figure 22 is the single pass gain evolution G(x) along the undulator

for four different electron beam radii: (a) ae = 0.2, (b) oe = 0.45, (c) oe = 0.9, and (d)

oe = 1.6.
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Figure 22. Gain along the undulator G(x) for electron

beams with radius (a) o e
= 0.2. (b) c e

= 0.45. (c)

oe = 0.9. and (d) o e = 1.6. Rayleigh length is z = ° 3 -

mode waist radius is w = 0.5.
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The Rayleigh length is z = 0.3 giving a mode waist radius of w = 0.5 (see (63)). The

expected LPC UVFEL electron beam emittance e = 0.43 is again. Electron beams (a)

and (b) have radii smaller than the mode waist radius (i.e., oe < w ) so that they are

enveloped by the light for the duration of their interaction. The radii of electron beams

(c) and (d) are greater than the mode waist radius. Because of this, their final gain

G(t=1) is reduced compared with beams (a) and (b). Also note that because of the

large angular spread oe = 4.6 for electron beam (a), the final gain is smaller than that

for beam (b). We saw in section D of the last chapter that electron beam (b) with

oe = 0.45 and oe = 0.9 was nearly optimum for z = 0.5 (optimum was oe
= 0.4).

The most encouraging aspect of the plots in Figure 22 is that although the final

gain differs among the four electron beams, all show nearly exponential gain (see

(58)) throughout the length of the undulator. This point is better illuminated by Figure

23. In this figure we normalized the curves G(x) from Figure 22 to their respective final

gains G(t=1) in order to compare the structure of the curves more closely. Figure 23

shows convincingly that all four of the electron beams simulated resulted in similar

gain evolution throughout the length of the undulator, even those ((c) and (d)) with

oe > w . We see that the gain evolution starts in all four beams after a small delay of

t = 0.2, which is just the time it takes for the electron bunch to form (Ref. 3).

In Figure 24 we have plotted G(x) for the same four electron beam radii, but

with the Rayleigh length reduced to z = 0.1. This means w = 0.3 and only electron

beam (a) with oe = 0.2 fits inside the optical mode throughout their interaction. For

this reason, beam (a) has the highest final gain. Electron beam (b) has final gain

reduced by nearly a factor of two over that in Figure 22 because it no longer fits inside

the optical mode at the waist. Beams (c) and (d) also have final gain reduced, but

only beam (d) has final gain less than 10%. This figure shows that in a single pass,

where the electron beam cannot couple to higher order modes, it is more important to

have the electron beam enveloped by the light than to have a small angular spread.
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Figure 23. Normalized gain along the undulator

G(t)/G(t=1) for electron beams with radii (a) oe
= 0.2, (b)

oe = 0.45, (c) oe
= 0.9, and (d) oe = 1.6. Rayleigh

length and mode waist radius same as in Figure 22.

For Figure 25, the Rayleigh length was further shortened to z = 0.02. In this

case w = 0.14 and none of the four electron beams fit inside the optical mode at the

waist. The final gain for electron beams (a) and (b) is less than half their value at

z = 0.1 in Figure 24. However, there is still gain at this very short Rayleigh length,

provided the electron beam is small enough. We see that o e = 0.9 or 1.6. curves (c)

and (d). are clearly too large. The final gain G(x) > 20% for the two smallest electron

beams.
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Figure 24. Gain along the undulator G(x) for electron

beams with radius (a) oe = 0.2, (b) ae = 0.45, (c)

oe = 0.9, and (d) ce = 1.6. Rayleigh length is z = 0.1,

mode waist radius is w - 0.3.

In order to better compare the evolution of gain G(t) in Figure 25, the curves

are normalized to their respective final values, as in Figure 23. The result is plotted in

Figure 26. The effect of the short Rayleigh length is clear: single pass gain increases

greatest where the fields la I are strongest, at the beam waist x = 0.5. The short

Rayleigh length causes the fields at t = 0.5 to be much stronger than at any other

position. This can be seen in electron beams (a), with ce
= 0.2, and (d), with

oe = 1.6. Electron beam (a) is focussed at t = 0.5; it was designed to take advantage

of the field strength at the center by concentrating electron beam current there.
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Electron beam (d) has a radius eight times that of beam (a). It is so large that gain is

poor throughout the interaction at this Rayleigh length. What little final gain exists,

however, was enhanced at x = 0.5 where optical fields are strongest. Indeed, we see

in Figure 26 that there was net absorption for beam (d) until the field strength started

to increase at x = 0.4. Also evident in the figure is that electron beams (b) and (c)

have radii which allow gain to be distributed more uniformly. That is, they are larger

than beam (a) so gain does not increase as much in the center of the undulator, but

are smaller than beam (d) so that gain increases more at the ends of the undulator.
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Figure 25. Gain along the undulator G(x) for electron

beams with radius (a) oe = 0.2, (b) oe = 0.45. (c)

c e = 0.9. and (d) oe = 1.6. Rayleigh length is z = 0.02.

mode waist radius is vv = 0.14.
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Figure 26. Normalized gain along the undulator

G(t)/G(t = 1) for electron beams with radius (a) oe = 0.2,

(b) o e = 0.45, (c) oe = 0.9, and (d) oe = 1.6. Rayleigh

length and mode waist radius same as in Figure 25.

To summarize, we have found that using a very short Rayleigh length degrades

gam. However, gain is still significant for the LPC UVFEL at a Rayleigh length as

short as z = 0.02. For o e = 0.2, the final gain is G - 37%, while for ce - 0.45. the

final gain is G = 23%. The gain is only senously degraded for electron beams with

a e - 0.9 and oe = 1.6. which have radii two and four times greater than optimum,

respectively. We also found that the most important region for the interaction is the

center of the optical mode where the fields are strongest, even if the electron beam is

much larger than the mode waist. This makes sense because it is the field amplitude
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la I which drives bunching in the pendulum equation (36).

When this research was started, however, it was thought that the interaction

may "turn off" at the center of the undulator, meaning that section of undulator could

be replaced by a drift space, making an optical klystron, which would improve gain.

The optical klystron consists of two undulator sections with a drift space at the center

(Ref. 3). The first section, called the modulator, starts the electron bunching process.

The drift space lets the electron momenta continue bunching in the absense of the

undulator field. The second undulator section, called the radiator, causes the bunched

electrons to radiate coherently. Instead of a drift space, the same effect can be

obtained in a shorter distance with a dispersive section, which is just a magnet that

bends the electron beam out of and back into the beam path. Slower electrons bend

through a smaller radius than the more energetic electrons. Since the faster electrons

travel a greater distance through the dispersive section than the slower electrons, they

are bunched upon exiting. It was found, however, that we do not need to resort to

exotic klystron undulator designs to get the desired gain.

2. Steady State Gain

Having studied how the gain G(i) evolves within a single pass, we will now

simulate several passes and follow the gain evolution G(n). Recall that G(n) follows

the final gain G at x = 1 after each pass n. We use the transverse multimode,

multiple pass simulations used in the previous chapter (see, for example, Figure 20)

where the optical mode evolves self-consistently in the optical cavity over many

passes.

The electron beams (a), (b). and (c) from the previous figures were simulated.

The simulations start from weak fields a = 0.01 and evolve until the limit of weak

fields la I « x is reached. At this point the final gain is in steady-state, by which we

mean that single pass gain G(t=1) has nearly the same value over several passes

and G(n) is nearly constant. It is this steady-state value of the gain evolution G(n)
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that is plotted versus the Rayleigh length z in Figure 27.
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Figure 27. Steady-state gain G versus Rayleigh length

for electron beams with radius (a) ae = 0.2, (b) o e = 0.45,

and (c) ce = 0.9. We find G > 60% at z = 0.01 for

beams (a) and (b).

In Figure 27, we see that the nearly optimum electron beam, (b), has the

highest steady-state gain at all Rayleigh lengths explored. This is in contrast with the

single pass studies in which electron beam (a) had highest final gam for z < 0.3.

This electron beam is evidently more efficient in coupling to higher order modes than

any of the other beams explored. Perhaps this is because of the better balance

between its beam radius ce = 0.45 and angular spread o = 0.9 in their contribution to

the electron phase velocity spread (i.e., it is better "matched" (Ref. 3)). The maximum

gain for all three of the beams occurs at Rayleigh length z = 0.1. The most important
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feature to note in the figure shows the goal of this chapter: steady-state gain is

substantial even at z = 0.01. For electron beams (a) and (b) we have G(n)> 60%,

while that for beam (c), twice the optimum radius, is still a respectable 12%.

Our conclusion is that the FEL with a short Rayleigh length may be able to

operate above threshold with respectable gain while spreading the optical mode at the

mirrors. The trade-off is slightly lower gain for a much shorter optical cavity with

reduced power loading at the mirrors.

C. MW-CLASS FEL WITH SHORT RAYLEIGH LENGTH

Encouraged by success in modelling the UVFEL with a short Rayleigh length,

the concept was used to design a MW-class FEL.

1. MW-Class FEL Design

Our goal in designing a MW-class FEL is to derive a set of parameters which

will provide sufficient gain within an optical cavity of length 10 m. This length was

chosen because it fits within the beam of a modern naval cruiser or destroyer.

FEL gain, discussed in section E of Chapter II, is dependent upon the

dimensionless current density j (see (57) and (58)). Maximizing gain therefore

requires that we maximize /. Recall that the definition of the current density in the

linear undulator is

. 8N(enK(J ^)-J^))L)2
p

J
= 3

—

~
2

(69)

where \ = K2
/(2(1 + K2

)). Since N = L/Xq we can re-write (69) as

*o
4 <70 >

r

where we have separated the parts of j according to their source. Following the

fundamental constants is the undulator contribution K2
(JJ)

2L 3
/Xq where we have
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shortened the Bessel function term in (70) to JJ. Since K ~ 1 in an FEL, which also

fixes the Bessel terms, we are left with L and X as designable undulator parameters

(Ref. 3). The electron beam contribution is p/y
3

. The charge density p depends on the

peak current / through

Q
p =

iTTTT <71 >

itecr'(le /c)

where Q = / x (/e /c) is the charge per micropulse (not the cavity quality factor), re is

the electon beam radius, and le is the length of the micropulse. The electron beam

energy ymc 2 determines y. Therefore we can write

L 3
/ 1

^o r£ f

Recall that the emission wavelength is given by

X = X iLtfl . (73)

With K = 1 this becomes X = Vy2
- This means that if we fix the wavelength X, then

X and y are not independent. Therefore, the remaining free parameters are

L, 7, rg , Xq, and X.

Our philosophy in choosing a design was to use a short undulator and use

peak current to maximize /". The reasons for this are twofold. First, we are using an

optical cavity 10 m long with a short Rayleigh length. The undulator has to be short in

order to fit around the optical mode at the center yet not "scrape" any of the light,

which would damage the magnets. Second, a short undulator means the FEL will be

less susceptible to electron beam quality. This is because the gain spectrum

bandwidth, which is proportional to 1/(2/V), increases for decreasing undulator length

L = NXq. This was discussed in section E of Chapter II and is important to the design,

because as we demand more current from the accelerator we expect the beam quality

to suffer.
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Accordingly, we chose an undulator length L = 1 m. The undulator wavelength

was taken to be X = 4 cm, which means N = 25 periods. Since the wavelength

X ~ 1 urn is fixed by the ship self-defense application, the electron beam energy is

ymc 2 - ^X /Xmc2 = 1 00 MeV. For the remaining parameters we chose / = 600 A,

re = 0.3 mm, and le /c = 3 ps. This results in a total charge per micropulse

Q = I x (le /c) = 1.8 nC. If every RF bucket of an f = 500 MHz accelerating field is

filled by the electron injector, the duty factor is (le/c)x f =0.0015. The average

current is then 7 = 0.0015 x / = 0.9 A. This results in an average electron beam

power of Fe
= 71/ = 0.9 A x 100x1 6 V =90 MW. An efficiency of 1.1% will be

needed to extract 1 MW from this beam. These design parameters resulted in j = 12.

All parameters are summarized in Table 3.

For electron beam quality we anticipate a trade-off between high peak current

and electron beam quality. We assumed an energy spread Ay/y = 0.5% and a

normalized emittance zN = 20n mm-mrad. These choices resulted in aG = 1 .5 and

£ = 0.27. The dimensionless electron beam radius is ce = 0.5 so that the angular

spread must be oe = 0.3. Noting that N is included in the numerator of (18) and (56),

we see that the small values for oG , oe , and e reflect our choice of a short undulator.

The beam quality parameters are also summarized in Table 3.

2. Simulations of the MW-Class FEL

Now that we have derived our parameters for the MW-class FEL, we use

simulations to make sure it works. Transverse multimode, multiple pass simulations

using the parameters in Table 3 were used to obtain the steady-state gain at different

Rayleigh lengths. An example of these simulations at z = 0.1 is shown in Figure 28.

Steady state gain is G(n) = 26%. plotted at lower right, and power P(n) is increasing

approximately exponentially. The optical field evolves over 20 passes yet is still weak

(la I <: n). Bunching is not evident in the phase space plot at lower center.
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Beam Energy

Peak Current

Average Current (@500 MHz)

Micropulse Length

Charge per Micropulse

Electron Beam Radius

£/v

Ay/y

Undulator Type

K

N

100 MeV

600 A

0.9 A

3.0 ps

1.8 nC

0.3 mm

207t mm-mrad

0.5%

Linear

1.0

25

4.0 cm

X 1 .03 ^m

j
12

Oe
0.5

Oe 0.3

€ 0.27

°G 1.5

Table 3. Design parameters for a MW-class FEL suitable

for ship self defense.
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FEL WAVEFRONTS

20 -7t/2 C, 371/2

Figure 28. Transverse multimode simulation of MW-class

FEL. Gain evolution G(n) is in steady state.

The electron positions overlaid on the plot of the optical field amplitude between the

mirrors la(x,x)l show that the electron beam does not expand nor focus as i : -> 1.

This is because the angular spread oe = 0.3 is relatively small.

Many simulations such as that in Figure 28 were used to find the effect of the

Rayleigh length on steady-state gain. The result is plotted in Figure 29. As in our

previous analysis of the UVFEL. maximum gain G - 23% for this FEL occurs at

z = 1 ( see Figure 28). Even at the short Rayleigh length z = 0.01, the steady-

state gain G = 18% is sufficiently large that simulations indicate the design will work.
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Figure 29. Steady-state gain G versus Rayleigh length

z for MW-class FEL. Peak gain G = 23% occurs at

z = 0.1. At z = 0.01, gain is G = 18%.

D. CONCLUSIONS

Using the LPC UVFEL parameters we showed that the concept of the short

Rayleigh length FEL was viable. This had never been researched before. Based on

those results, parameters for a MW-class FEL for ship self-defense were denved. This

FEL design was simulated and steady-state gain was found to be G = 18% at

z = 0.01 It was presented at the workshop entitled "Navy MW-Class SSD FEL

Concepts" at TJNAF in Newport News. Virginia, which was sponsored by the Navy

High Energy Laser office at SPAWAR. It is one of only two designs that survived the
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workshop.

To improve on our design, the electron beam radius should be optimized. At

oe = 0.5, we have a small ce = 0.3 which suggests it would be advantageous to focus

the electron beam further. Research should also determine what affect the Rayleigh

length has on FEL efficiency. At short Rayleigh lengths, many electrons are outside

the optical mode at the waist and do not participate in the interaction. Efficiency might

be degraded. This is the trade-off made in choosing a short Rayleigh length over

more traditional FEL designs. As we noted above, we must extract 1.1% of the

electron beam energy in order to obtain 1 MW average power. Methods of improving

efficiency should also be studied.

The design philosophy of using a shorter optical cavity and undulator requires

high peak and average current. It shifts the technology burden from the mirrors to the

accelerator, where improvements in high average current generation and acceleration

must be made. Another area of accelerator physics that needs much further research

is in electron beam transport. For our laser to work on a ship, we have determined

that we must use an energy recovery architecture similar to that proposed for the LPC

UVFEL in order to increase overall system efficiency, among other reasons (Ref. 9).

This reduces the power consumption of the FEL by recirculating the electron beam

through the accelerator, where it is decelerated, giving up its energy to the RF

accelerator field. Recirculation requires the bending of a high current, high energy

electron beam through two 180 degree bends, but, at the time of this writing, there is

some question as to whether or not that is even possible.
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VI. COMPTON BACKSCATTERING OF LASER LIGHT

A. PRELIMINARIES

We turn our attention now to the scattering of laser light from a high energy

electron beam. The electron beam scatters high energy photons out of an incoming

laser field. The process is similar to the FEL in that the incoming laser pulse can be

thought of as an electromagnetic undulator, but with extremely small wavelength. The

process has been described classically and with relativistic quantum mechanics,

assuming a plane wave approximation for the laser field (Refs. 11, 12, 13). Recently,

a correction to the plane wave approximation was attempted, using quantum

electrodynamics (QED) (Ref. 14). Derlet et. al. treated the interaction of free electrons

with rays of laser photons focused by a lens to the interaction region (Ref. 14). The

calculation presented in this chapter is the first attempt to correct the plane wave

approximation to the laser beam by treating it as a diffracting beam. That is, we

assume the incoming laser beam is a fundamental Gaussian mode.

In the next section, we calculate the vector potential for the Gaussian optical

mode. We approximate the Gaussian mode for long Rayleigh length in a manner

similar to the analysis in section G of Chapter II. In section C, we calculate electron

wavefunctions in the field represented by our vector potential. We use those

wavefunctions in section D to find the distribution and rate of photon emission. This

will be the first time this calculation has been done without the plane wave

approximation to the laser field.

The notation used in this chapter is that of Sakurai (Ref. 15). We represent a

four-vector as, for example, b
M
with p = 1.2,3.4 where

fc
M
= (b i,b2.b 3.b4 ) = (B.ib ) (74)

where b
y , b 2 , and b 3 are real, corresponding to the x-, y-. and z-components of the

three-vector B, and b 4 = ib is imaginary. We use a summation convention so that
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the scalar product of two four vectors b^ and c^ is

3

b
\i
c

\i
= T b

j
c
j + 64C4 = $•? - b c . (75)

7=1

We will frequently shorten the notation for a scalar product from b^c^ to b-c for

brevity. In our summation convention, Greek indices such as \i, v, etc. run from 1 to 4

and Roman indices like i, j, k, etc. run from 1 to 3. We define the coordinate vector

as

x^ = (*,ict)
, (76)

where t = x^ + x29 + x32. The momentum four-vector is

pVL
=(p,iE/c) , (77)

where p and E are the particle momentum and total energy, respectively. The

wavevector of a photon is

k
v
= (/c./co/c)

, (78)

where l/?l = 2id\ = co/c for a free photon. Variables are not made dimensionless as in

the previous chapters.

We use Heaviside-Lorentz units throughout this chapter. The fields and

potentials in this system are related to those in Gaussian units by the factor 1/V4ti

(Ref. 15). We will take the electron charge e to be negative e = -lei.

A typical experiment, and the one we will use in order to obtain order-of-

magnitude estimates to certain terms, is the proposed "laser synchrotron source"

(LSS) at the Naval Research Laboratory (NRL) (Ref. 11). They have proposed using

a 41 MeV electron beam with micropulse length le /c = 1 ps. The incident laser is a

tabletop-terawatt (T3 ) device with wavelength X = 1 ^m. The laser peak power is 10

TW in a 2 ps pulse, which means the energy per pulse is 20 J. The Rayleigh length is

z = 7.9 mm and the mode waist radius is w = 50 ^im. The energy of the emitted

photons is expected to be 30 keV (x-rays). We can then calculate some typical values
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for useful combinations of parameters: eA /mc2 ~ 0.4, TiCLlmc
2 ~ 0.06, and

Tiodlmc
2 = 2x10-6 . We define A as the amplitude of the vector potential, m is the

electron rest-mass, c is the speed of light in vacuum, f) is Planck's constant divided by

2k, Q. is the frequency of the emitted photon, and go is the frequency of the incident

laser. Note that the combination eA /mc2
is analogous to the undulator parameter K

in the FEL

B. VECTOR POTENTIAL FOR LASER LIGHT

The fundamental Gaussian mode for some freely propagating scalar field U

can be written:

w(z)

x 2+y2

.W2(Z)\ -j(kz -<of-H|>)
(79)

where U is the amplitude in the center of the beam waist (Ref. 7). The mode radius

is

w2
(z) = wg 1 + (80)

where w is the radius of the mode waist. The mode waist radius and Rayleigh length

are related by

*o =
Tiwl

(81)

The optical phase is

< = -tan'
1 z

\, J

A
2R(z)

(82)

where R(z) = z + zliz is the wavefront radius of curvature. The ongin z = is

located at the mode waist.
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Since our goal is to obtain a correction to the plane wave approximation for our

scattering problem, we will find the form of (79) when it nearly represents a plane

wave, or z » z. For this case, it makes sense to expand (79) in the small parameter

(1/z ) in a manner similar to the WKBJ approximation (Ref. 16). That is, we will

expand both the amplitude and phase of (79) in (1/z ) and approximate them by

keeping terms only to first order in (1/z ).

Upon expanding the amplitude we find that

x2+y2

^o „" w2
(z) Uo

T^ e =
w(z) w

1
1 k(x2 + y

2
) + o 1

z
<. J

(83)

Likewise we find for the phase

<t>
= + O (84)

Therefore the WKBJ approximation for the Gaussian mode is

U =
w

1
1 k(x2 + y

2
)

z 2

-/[(* - Vz )z-at]
(85)

To lowest order in (1/z ) we see that the Gaussian mode is nearly a plane wave. The

only differences between (85) and a plane wave are a phase shift from k -> k - 1/z

and an amplitude correction which decreases the amplitude for electrons off-axis. To

an electron in the Gaussian mode, the phase shift appears as a shift in the laser

wavelength X -» A;(1 - 1//cz ) = X(1 + 1//cz ). Therefore we can anticipate that the

presence of the Gaussian mode should result in a shift in wavelength of the emitted

radiation as well.

For our calculation, we will take (85) to be our vector potential. Since this

potential is real we will use the real part of (85) and wnte

X = And
z 2

cos (k - 1/z )z-of1 (86)
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where A , with w absorbed, is the on-axis magnitude of A and a is the polarization

unit vector. If the laser light is linearly polarized in the x-direction, as we will assume

in this chapter, then & =(1,0,0). We will only consider on-axis (i.e., x2 + y
2 = 0)

electrons, so that we can write (86) as a four-vector as

>V*) = (Mx),iA ) = ^o^cosf/OJ (87)

where a u
= (5,0) and

K, kv
- 5V =

z c
(88)

is the modified propagation vector. The vector 8V = (0,0,1 /z ,0) represents the phase

shift discussed above. We note that A^x) satisfies the Lorentz condition

dAp/dx^ = K^A^ = and, since in the gauge we have chosen A = 0, the transversality

condition V-X = tf-A = is also satisfied (Ref. 15).

C. DIRAC WAVEFUNCTIONS

The wavefunctions for an electron in a plane wave electromagnetic field were

found in 1935 by D. M. Volkov (Ref. 17). We will follow nearly the same technique,

but using our vector potential (87) for the Gaussian mode.

The Dirac equation for an electron in an electromagnetic field characterized by

A^(x) is given by

a
Yv
dx v

ie A mc
v = (89)

where the 4x4 matnces >v are called the "gamma matrices" (Ref. 15). They are

defined by the requirement that they satisfy

lYn- Yv) = YMYv + YvYM - V <9°)

where
{ , } is called the anti-commutator, and &MV =1 if m = v, otherwise, is the
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Kronecker delta (Ref. 15). In our notation, the gamma matrices are

Y*
-i<5k

i<5k
. Y4

/

-/ (91)

where / is the 2x2 identity matrix and the Gk are the Pauli spin matrices given by

Oi = [0 1]
"0 -i "1 0]

.1 o.
,a2

=
J o.

. o-3 = -1.
(92)

For example, we write 73 using o3 as

Y3 =

-/'

/

/

-/' oj

(93)

We also note here that the gamma matrices are Hermitian Yff
= Yn (Ref- 1 5). The

wavefunction in (89) is a four component object called a Dirac spinor (Ref. 15). Thus

(89) is actually four coupled, first-order, differential equations for \\i.

We can obtain the quadratic form of (89) by multiplying on the left by the

operator

=
'"ax,

le , nw
(94)

with the result

a d

dX
M
dx

M

2ie
A

d

t)c
M 3x

M

ie

r

dA v

y

ax

e2

A A
tfc2 * »

mc2

i|/ =

Substituting (87) for A
s

. we find that

dA v

ax7
= K^'

(95)

(96)

where

We can then rewrite (95) as

>4 V
' = -Aoa.smiKvXo) (97)
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dx^ dx^

2ie
A 3 ie

Tic
M dXp Tic

(T K)(tA')
e 2

A 2 _ mc'

T?c2
T?

\|/ = (98)

where we have used y-K = y^K^, etc.

Following Volkov, we seek a solution to (98) of the form

i£
tr

\\f = e n
${k-x) (99)

where ty(k-x) is a Dirac spinor. We subject our solution to the initial condition

\\f -> u (
'
s
\p)exp(ip-x/f)) as x -^ -~ for an electron coming into the interaction region.

We recognize u (s)
(p) as the free electron spinor, s = 1,2 is the electron spin index

and p is the electron momentum (Ref. 15). The initial condition means physically that

prior to entering the interaction region the electron is free. Substituting (99) into (98),

we find that ty(k-x) must satisfy

|f
P*'© + fc^-fc™*-*?*m = o (100)

where £ = /cx, <))' = d<j)/d£, and we have used k2 = 0. This first-order differential

equation has the solution

<t>(s) = exp

5

e f (tK)jtA') ie r

9r J n.Jc ^ fir J2C p-/c

Ap e A 2

pk 2c p-k
df u (101)

where u is a Dirac spinor. Invoking the initial condition, we find that <|> -* u as % —>
-«>

so that y -> uexp(ipx/Ti). Therefore, we will take u to be the free electron spinor

u = \mc2/EVu {s)
(p) where V is the normalization volume and E is the total energy

(Ref. 15). The wavefunction for the incoming electron is

„„ = exp -5-
[
fr*Hr*') d t' + J*

[

f

T" ^ Or J nir s
fir J2c_{. p-fc T)CL

Ap e A 2

pk 2c pk l*V (102)

V*
mcc

EV
u ($)(p)e "
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We can show that this wavefunction satisfies the Dirac equation (89), as it

must, in addition to being a solution to (95) (Ref. 12). Let D represent the Dirac

equation operator such that the Dirac equation is D\\f = 0. Then DD\\r = represents

(95). (Recall that D was defined in (94).) Let x=D\j//n where y/n is given by (102).

Now since vj/;n reduces to the free electron spinor, which satisfies the Dirac equation,

as x -» -oo, we know that % -> as x -> -«>. Since DD\\f
jn
= Dx = and x -* as

x —> -oo, we must have x = identically. Therefore, D\\fin = and \j//n satisfies the

Dirac equation (89).

To find the wavefunction for the outgoing electron, we must solve (95) subject

to y -> u^ )(p')exp(ip'-x/f)) as x -> oo. The result is

Vout = exp
e r (rK)(rA*) dl

, ie

2c( p'-k
s

TiC]

e A''A-P'

p' -k 2c p' k
<**; (103)

mc'

EV

1
/2

u^\p')e

;P X

where the outgoing electron is specified by spin index s', momentum p', and energy

E.

We now turn to the task of evaluating the integrals buried inside the

wavefunctions (102) and (103). The vector potential in the integrals of (102) and (103)

is a function of Kx = kx - 6x while the variable of integration is kx. Let

X - K-x - ^Sx and perform a change of variables to x- We find

'
"\ f T "\2

2 11
1 + f(8x) dX = 1 +

kz.
dx (104)

and we approximate the differential d^ with the first two terms. Making the change of

vanables in (102) we write
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Y/n = exP 1 +
kzt

e

2c

X

*J*
(rK)(rAW))

d}. (105)

X+8-x

—
ftin J

A(X')-P e A 2
(X')

p-k 2c p-k
d%'

mc
EV

'/;

u (s\p)e

.p-x

The correction term (1 + 1//cz ) which we discussed in the last section appears

explicitly in the electron wavefunction. Substituting the vector potential (87) into (105)

and performing the integrations we arrive at

V/n = exPi 1 +
kz.

e

2c

r

(rK)(ra)

p-k
cos(/c-x)

te

Tic p-k
sin(/c-x)

eAl

2c

r

1 kx sin(2/c-x)

2 4

(106)

mc
EV

V4 .px

u (s\p)e "

where we have dropped divergent sine terms in the phase of the wavefunction. The

divergence of these terms is not physical, arising because our vector potential

describes a laser beam undamped at -oo while we require that the fields associated

with >4
M
vanish at -«>. Likewise, we perform the change of variables (104) and the

integration in (103) with the result
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Vout = eM 1 +
kz(

e

2c

(rK)(ya)

p'-k
cos(k-x) (107)

+
le

tic

a-p'

p'-k
sin(/c-x)

eAl

2c

" ""If

1

p'-k

kx s'\n(2k-x)

2 4

x
mc'

EV

V6 . p'-X

u {s,)
(p')e'

n

for the outgoing electron.

We now have the wavefunctions for the electron entering the interaction region

(106) and for the electron leaving the interaction region (107). The difference between

these wavefunctions and the Volkov wavefunctions is in the factor (1 + M(kz )) in the

exponential and the presence of the modified propagation vector K^ instead of k^

(Refs. 12, 13, 17). As we expected, by choosing a Gaussian mode which differed only

slightly from the plane wave (i.e., z » z), our wavefunctions differ only slightly from

the Volkov wavefunctions. We now use these wavefunctions to find the effect of the

Gaussian mode on photon emission.

D. PHOTON EMISSION

For the calculation of the differential transition rate in this section we will use

"natural units" ft = c = 1. This aids the calculation in that we will not have to keep

track of all of these fundamental constants. We will write our results at the end of the

section with these constants included so that real numbers may be calculated.

The amplitude for an electron transition from \\i in to y^ with the emission of a

photon is

M = -\j»K
nt)d*x (108)
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where the integral is over all space and time (Ref. 15). The interaction vector potential

A^'nt) for the emission of a single photon is

A™ =Vi^)e_/(/x) (109)

where /^ is the emitted photon propagation vector and zjf\ r = 1 ,2, is its polarization

vector (Ref. 15). These are given by

V = (?,/") (110)

where Q. is the frequency of the emitted photon and

4
r) = (tl

r)

,0) (111)

is chosen such that (£
(1)

,£
(2)

,7)r/1) form a right-handed coordinate system in three

dimensional space (Ref. 15). The interaction of the electrons with this unquantized

vector potential (109) for photon emission is rigorously equivalent to their interaction

with the quantized electromagnetic field (Ref. 15). The transition current j^ is

j li
(x) = ie^outy^in (112)

where y^ is given by (91) and y = y f
y4 is the adjoint spinor (Ref. 15). Substituting

(109) into (108) we can write the transition amplitude as

M =Wi^ (x)^)e
~'
(/X)af4x

•
(113)

To find the transition current y M
(x) we substitute the wavefunctions (106) and

the adjoint of (107) (recall ft = c = 1) into (112) with the result
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/u(*) = /W—a/— e' (p
- p

'

;

'm i
V EVV EV

x< o^\p')exp
eA<

1 +
kz t

x exp
eA,

1 +
kz t

y-Kya

pk

y-a y-K

p'-k

coskx

coskx

u {s)
(p)

(114)

x exp /'asin/cx - /'(3(2/cx + sin2/c -x)

where we have defined

a = e/A, 1 +
kz.

a-p a-p

p-k
"

p'-k

and

P =
e 2

/\n
2

8
1 +

/CZr

1 1

pk p'-k

(115)

(116)

We will now simplify and make some approximations to (114). Using the

property of gamma matrices that

(yb)(yb) = b 2
, (117)

which is a special case of

(rb){yc) = be - (yc)(yb) ,

we can expand the real exponentials in (114). The expansion yields

(118)
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exp
eA,

1 +
kz. p k

1 +
eA,

1 +
kz (

(119)

where we have ignored terms of higher-order in (1/z ) and those proportional to

(e/A /(2p')
2
(1//cz ) = 1CT10 and higher. We used the NRL parameters discussed in

section A to calculate these estimates. We can simplify (114) by writing the complex

exponential involving a and (3 in terms of Bessel functions using the generating

function

,/xsine _ /me= I e'™Jm (x) (120)

where m is an integer (Ref. 18). We find

exp[/osin/c-x - i$sm2k-x]= £ £ e i(m~2n)kx Jm (a)Jn {$)

m=—°°n=—°°

= I a'
2*'* I J2{q+n)(V-)Jn(V)

Q =

X e /2*-x G «7,a.p)

(121)

where G (g,a,P) = £ ^2(q+n)(a)^n(P)- Tn's term (121) leads to emission into

harmonics where q is the harmonic number. We then incorporate these simplifications

and re-write (114) as

/„<*) = "^-SpE i Golq.aW*-'*''-™ )* (122)

x
{t

\p-) 1

eA,
1 +

kz.
l*J*coskx
pfk

1 +
eA n

1 +
kz,

UH*coskx
pk

u {5)
(p)
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Substituting (122) into (113) to get the transition amplitude we find that we can

write

where

M = M + M-\ + M2

M, -W^WiWii/ ? K-"'
(,
"p+p'"2(q "p^

(123)

(124)

xn {*\p')rz
{r)

u(
s)(p)G (q,a$)

and

M<=-ie-\l
1 +1-HL<kI-HL y fw4x e-'(/-p+p'-2(q-P)*)x

1
'e
\ 2QV V El/ V F\/

qLJ

e/4,
1 +

AZr

,(s'
D ls

\p')
y-a y-Ky-z^ y-e^y-Ky-a

p'' -k p-k
u {s)

(P)

(125)

x G (q ,a,(3)cos/c-x

and M2 «= (e>Vm)2
(co/m) = 10

~7 can °e neglected in comparison with M . For the

transition probability, we need to find \M\
2 = \M \

2 + M^M^ + M Mf + \M-
[

\

2
. The

term \M^\ 2 « (e>Ao/m)
2
(co/m)

2 = 10~ 13 and can be safely ignored in comparison with

l/W l

2
. Also, the cross-terms like MjM, « (eA /m)(u>/m) ~ 10"*, so that ignoring these

terms when calculating I Ml 2
will introduce an error of one part in 106

. Therefore we

will use IM

I

2 = IM I

2
. Carrying out the trivial integration in (124) we find

\MJ 2 = e 2
(2n)

i
1 m m

2£1V EV EV
l5(4)(/-p+P'-2(Q-3)/f)l

2
(126)

x lD
(s

'

)

(^')YE
(r)
u <s)^)l 2

Go
2
(Q.a,P)

for the specific harmonic number q. We note that in order for the energy-momentum

conservation relationship inside the 6-function to be true, q must be a positive integer.
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The total transition probability is then %\M
q

\

2
. We write the square of the delta

g=1

function as

l5<
4
>(/-p+p'-2(q-(3)A-)l 2 = -^I-5(4

>(/-p+p'-(Q-2P)/0
(2tc)

4 (127)

where V and T are the interaction volume and time (Ref. 15).

The transition rate per unit time \M
q

\

2/T into a group of final electron and

photon states is

\Ma \

2 3|*'|Vd<\p

(2nY

Vd3
\T\

(2kY
(128)

where the two differential factors are the density of final states for the outgoing

electron and emitted photon and integration over p' and 7* is implied (Ref. 19).

Substituting (126) into (128) we find

e 2
1 m mdWa =

Q
(2k)

2 2ft E E
5(4)

(/-p+p'-(Q-2P)/f) la^^p'ft-e^u^W2
(129)

x G$(q,a$)d3
\p'\d

3
\?\

and we see that the dependence on V and T disappears, as it should. Performing the

integrations we are left with

1-1
dWg _ e 2 Q m m
dl ' (2nf 2 E E' BQ

(Q + E' + 2(3(0) la^^y^u^ipy 2
(130)

x G 2
(Q.a.(J)

which is the differential transition rate for a photon emitted into the solid angle element

dZ. The denvative term in brackets is the result of the 171 = il integration over a delta

function whose argument is itself a function of the photon emission frequency LI (Ref.

19). We note that (130) is subject to the energy-momentum conservation relations
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p/ = P^ + 2(q-P)^-/M (131)

which implies

p' = p + 2(q -P)^-T (132)

P =£ + 2(q -P)to-Q (133)

and because

P =(l^'l 2 + m 2
)

V2
, (134)

E itself depends on Q. through (132). Equation (131) is Lorentz invariant; it holds in

all inertial reference frames.

The remainder of the calculation will be easiest if we use the "laboratory frame"

defined, for historical reasons, as that in which the incoming electron is at rest. This

implies that p = and p M
= (0, im). Thus (132) becomes

?' = 2(g-P)?-r (135)

and the outgoing electron energy is, substituting (135) into (134),

E = (136)4(qr - P)
2
o)

2 + Q.
2 - 4(q - P)(oncos0 + m'

where 8 is the angle between 1< and 7*. Since we know /c = (2tJX)2, 6 measures the

angle of photon emission from the z-axis, as shown in Figure 30.

We can find the frequency Q. of the emitted photon by squaring both sides of

(132) to obtain the invariant equation

2(q - P)p/c - l-p - 2(q - P)//c = (137)

where we have used p
2 - p' 2 = 0. Computing the scalar products in (137) in the lab

frame and solving for Q we find

n = 2(9 - P)°>
. (138)

1 + 2(Q - P)— (1 - COS6)
m

This frequency is corrected in that it is slightly decreased from the plane wave
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approximation, since (3 « A$tf + 1/(/cz )). The frequency is shifted by the factor

(1 + 1//cz ), which is the shift in frequency of the incident laser light as seen by the

incoming electron, as discussed in section A.

Figure 30. Coordinate system showing kinematics of

Compton scattering (after Ref. 15).

To compute a, (115), and p, (116), we compute the scalar products:

pk = -mco ,

p' k = p'-lt - E 03 = co[2(q - P)o) - ftcos6] ,

a p = ,

and

ap' - ftp' = -wsinBcoso

Substituting these into (115) and (116) we arnve at

f

a = eA \*\ +
i

i

1 sinttcoso

kzQ £2(1 - cos9) - m

(139)

(140)

(141)

(142)

(143)

where o is the angle between the projection of / onto the x-y plane and the x-axis (see
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Figure 30) and

P =
e 2A%

8com
1 +

kzr

Q(1 - cos9)

m - £2(1 - cosG)
(144)

and we see the dependence of p on the emitted photon frequency L~l.

We are now in position to calculate the derivative in (130). Using (136), (138),

(144) and a lot of algebra we find that

> + E' + 2M =^f (145)

We recognize this term, apart from the harmonic number q, from ordinary Compton

scattering (see Ref. 15, page 228).

We can now write (130) in the lab frame as

— = a

—

QfZ 4k

Q
QCO

lD
(sV)re (r)" (s)

(2)l
2
Go(9.a.P) (146)

where a = 1/137 is the fine structure constant (Ref. 15). The last thing we need to do

is calculate the term Irjyeul
2

. Since the spin of the initial and final electrons is

unobserved, we average over the initial spins and sum over the final spins with the

result

4-Il0(O(jnY-e (,Vs)
(Jtf)l

2 =
s.f

E - m
2m

(147)

where we have used "Casimir's trick" in order to compute the spin sum using the trace

method (refer to pages 191-192 in Ref. 15).

Our final result, for the emission rate of a photon of frequency Q into the solid

angle element dl around 6, including Ti and c, is

dW,
Q LI—— = a—

dl An go)

E' - n\C

2mC
G 2

(Q.a.(3) (148)

Recall that for the entire spectrum, (148) must be summed over the harmonic number
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q. We summarize our other results, including T) and c, as well:

Q = 2(Q - P)co

1 + 2(q - P)-^(1 - cose)

F = 4(q - P)
2
/?
2^2 + rfQ.

2 - 4tf(q - p)co^cosG + m

V

j\ = eA
{

1 +
kz<

sinecos(()

7K2(1 - cose) - mc2

(149)

(150)

(151)

P =

e2
/\

2

4mc
1 •

1
f (1 - cose)

2 e^omc'+ -
4mc^ /cz

(1 - cose)

(152)

and we have used (138) to write p in terms of the scattering angle and laser frequency

(o. Our Gaussian mode correction (1 + Mkz ) is evident in each of these equations

either explicitly or through p. We see that both the angular distribution (through G in

(148)) and frequency (149) can be altered by merely focussing the laser beam.

If we specialize now to backscattering, e = n, we see that r\ —» and the

Bessel function sum collapses:

G (Q,ri=0,P) = IJ2(n+q)(0)Jn (P) = (-1)%(P)
oo

since only J (0) > implies n = -q and we have used the identity (Ref. 20)

J-n(*) = (-1)
n
Jp(x) •

(153)

(154)

Therefore we find that the transition rate becomes

dW,

dl 4tc QCt)

E' - mc'

2mC jf(V) (155)

The argument of the Bessel function becomes
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'—-t 1 + 1//fZo
2A77C L J ,*--«

P= 272 (156)

2
eM

(

2mc c

and the emitted wavelength is

1 + Mkz<

n= 2<9 - P>"
. (157)

1+4<Q-B-5SL
/77C

Since (fico/mc
2
) ~ 10"6

, we can approximate Q. by the numerator in (157). Writing this

in terms of the wavelength we find

A = 2uh® ~~ i (1 +m <158)

since p = 0.04. We see that the wavelength of the emitted photon is shifted by

(1 + 1//cz ) by the Gaussian mode, as expected.

E. CONCLUSIONS

In 1935 D. M. Volkov derived the Dirac wavefunctions for an electron in an

electromagnetic plane wave. We made a correction to those wavefunctions by solving

the Dirac equation in the external field of a laser with a realistic, finite Rayleigh length

z . We then used those wavefunctions to find the rate and angular distribution of

photon emission in this field. We found that both the angular distribution and

frequency of the emitted photons can be altered by changing the Rayleigh length, that

is, focussing the laser.

Further research should add the finite length of the laser pulse to the

calculation. This will give the emission lines a width in frequency corresponding,

through the Founer transform, to the pulse length.
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